scholarly journals Design and implementation of fast floating point units for FPGAs

Author(s):  
Mohammed Falih Hassan ◽  
Karime Farhood Hussein ◽  
Bahaa Al-Musawi

<p>Due to growth in demand for high-performance applications that require high numerical stability and accuracy, the need for floating-point FPGA has been increased. In this work, an open-source and efficient floating-point unit is implemented on a standard Xilinx Sparton-6 FPGA platform. The proposed design is described in a hierarchal way starting from functional block descriptions toward modules level design. Our implementation used minimal resources available on the targeting FPGA board, tested on Sparton-6 FPGA platform and verified on ModelSim. The open-source framework can be embedded or customized for low-cost FPGA devices that do not offer floating-point units.</p>

2003 ◽  
Vol 1 (2) ◽  
pp. 233-246 ◽  
Author(s):  
George Otto ◽  
Loukas N. Kalisperis ◽  
Jack Gundrum ◽  
Katsuhiko Muramoto ◽  
Gavin Burris ◽  
...  

The VR-Desktop initiative is an effort to bring key benefits of projection-based virtual reality into the mainstream of teaching and research at the Pennsylvania State University, through the deployment of comparatively low cost and easy to use virtual reality and integrated multimedia display systems within a variety of contexts. Recent experiences with design and implementation of single- and multi-screen VR systems for teaching and research are described. The systems discussed employ low cost and readily available hardware components, familiar desktop computing environments, and open-source VR development toolkits. The approach is modular and easily adaptable to various applications in research or instruction.


Author(s):  
Pavel Katunin ◽  
Jianbo Zhou ◽  
Ola M. Shehata ◽  
Andrew A. Peden ◽  
Ashley Cadby ◽  
...  

Modern data analysis methods, such as optimization algorithms or deep learning have been successfully applied to a number of biotechnological and medical questions. For these methods to be efficient, a large number of high-quality and reproducible experiments needs to be conducted, requiring a high degree of automation. Here, we present an open-source hardware and low-cost framework that allows for automatic high-throughput generation of large amounts of cell biology data. Our design consists of an epifluorescent microscope with automated XY stage for moving a multiwell plate containing cells and a perfusion manifold allowing programmed application of up to eight different solutions. Our system is very flexible and can be adapted easily for individual experimental needs. To demonstrate the utility of the system, we have used it to perform high-throughput Ca2+ imaging and large-scale fluorescent labeling experiments.


Sign in / Sign up

Export Citation Format

Share Document