scholarly journals A review of available hybrid renewable energy systems in Malaysia

Author(s):  
Nur Huda. M Tambi ◽  
Hadi Nabipour Afrouzi ◽  
Kamyar Mehranzamir ◽  
Jubaer Ahmed

The utilization of conventional sources of energy releases harmful pollutants to the environment causing global warming and acid rain. For that reason, it becomes necessary to use a non-depletable, sustainable and eco-friendly renewable energy as a mean of producing electricity. Malaysia is tropical country rich in resources beneficial in electricity generation as it is in equatorial region therefore it has an abundance of solar irradiance of average annually. In addition, Malaysia’s demand in electricity is increasing to 124,677 GWh by 2020. Therefore, the electricity generation from renewable sources in Malaysia is anticipated to grow in the future alongside the government endorsement due to its clean, eco-friendly and free source of energy which can highly reduce the dependency on oil and gas that emits harmful pollutants to the environment. This paper gives a comprehensive review on the renewable projects and researches in Malaysia, challenges that affect popularity of renewable energy in Malaysia and available and successful renewable energy system in Malaysia.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6223
Author(s):  
Bin Ye ◽  
Minhua Zhou ◽  
Dan Yan ◽  
Yin Li

The application of renewable energy has become increasingly widespread worldwide because of its advantages of resource abundance and environmental friendliness. However, the deployment of hybrid renewable energy systems (HRESs) varies greatly from city to city due to large differences in economic endurance, social acceptance and renewable energy endowment. Urban policymakers thus face great challenges in promoting local clean renewable energy utilization. To address these issues, this paper proposes a combined multi-objective optimization method, and the specific process of this method is described as follows. The Hybrid Optimization Model for electric energy was first used to examine five different scenarios of renewable energy systems. Then, the Technique for Order Preference by Similarity to an Ideal Solution was applied using eleven comprehensive indicators to determine the best option for the target area using three different weights. To verify the feasibility of this method, Xiongan New District (XND) was selected as an example to illustrate the process of selecting the optimal HRES. The empirical results of simulation tools and multi-objective decision-making show that the Photovoltaic-Diesel-Battery off-grid energy system (option III) and PV-Diesel-Hydrogen-Battery off-grid energy system (option V) are two highly feasible schemes for an HRES in XND. The cost of energy for these two options is 0.203 and 0.209 $/kWh, respectively, and the carbon dioxide emissions are 14,473 t/yr and 345 t/yr, respectively. Our results provide a reference for policymakers in deploying an HRES in the XND area.


2019 ◽  
Vol 113 ◽  
pp. 03022 ◽  
Author(s):  
Marek Jaszczur ◽  
Qusay Hassan ◽  
Patryk Palej

In this work, we focus on utilization of hybrid renewable energy system for a residential load based in two different optimisation criteria. The presented system utilises photovoltaic modules wind turbines and batteries as energy storage. The analyses were carried out based on experimental measurements, for the electrical load, local solar radiation, wind speed and other environmental parameters. The optimisation process has been performed based on two aspects economic and ecological. The novelty of this work to find the relationship between two optimisation objectives.


2021 ◽  
Author(s):  
James Morales Lassalle ◽  
Dante Figueroa Martínez ◽  
Luis Vergara Fernández

Access to energy services is recognised as a fundamental aspect of economic and social development. This is particularly important for isolated areas, where electrical supply is not guaranteed. Because of their inherent geographic characteristics, islands are prominent cases of isolated areas that must import and burn fossil fuels, with environmental and economic consequences. In this context, Hybrid Renewable Energy Systems (HRES) emerge as an alternative to traditional generation to reduce energy costs and environmental issues. This study aims to demonstrate the feasibility of implementing HRES on islands, based on energy optimisation. We present an extensive review of HRES optimisations across 73 island cases, collecting information about energy demand, energy system sizes, and optimisation methodologies. The most commonly proposed HRES components are identified, and a significant power relationship is found between population and annual energy demand on islands. Further, we identify islands with higher-than-expected and lower-than-expected consumption and the underlying causes. The main limitations of the reviewed studies are discussed, particularly with regards to availability and quality of hourly demand data and/or meteorological data required for renewable energy assessments. Several approaches to fill these gaps in information are reviewed here, concluding with a discussion of emergent methods and technologies.


Author(s):  
Nnadozie Emmanuel Chibuikem ◽  
Oparaku Ogbonna Ukachukwu

For the dual reasons of energy security and environmental and climate preservation, there has been a global campaign for drastic reduction in the use of fossil fuels and a consequential aggressive pursuit for the development of clean energy systems. Hybrid renewable energy systems, ahead of single source renewable energy systems, promise to be an effective alternative to the use of fossil fuels. However, if hybrid renewable energy systems must effectively and reliably serve as an alternative to fossil fuel use, then improvements in the control and management of energy flow among the renewable energy supplies, energy storage components, and the load is of very vital significance. More intelligent and optimized, and easy-to-develop control techniques need to be introduced to replace already existing conventional techniques. And very importantly, extra measures have to be taken to ensure longer battery life and the overall safety of the system. This work is a design of a fuzzy logic-based control system for managing energy flow in a hybrid renewable energy system. A dedicated output was incorporated in the fuzzy controller for controlling the load connection status. The results showed that the fuzzy logic controller accurately emulated expert decisions in monitoring the battery state-of-charge and renewable energy supply capacities, and effectively determining and controlling the battery charging and discharging functions. The employment of fuzzy logic control in the system eliminated the need for complex and tedious mathematical modelling as required in conventional control methods. Thus the system was easier to develop.


Sign in / Sign up

Export Citation Format

Share Document