scholarly journals Fuzzy Logic Hysteresis Control of А Single-Phase on-Grid Inverter: Computer Investigation

Author(s):  
Angelina Tomova ◽  
Mihail Antchev ◽  
Mariya Petkova ◽  
Hristo Antchev
Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4796 ◽  
Author(s):  
Eyad Radwan ◽  
Mutasim Nour ◽  
Emad Awada ◽  
Ali Baniyounes

This paper presents a control scheme for a photovoltaic (PV) system that uses a single-phase grid-connected inverter with low-voltage ride-through (LVRT) capability. In this scheme, two PI regulators are used to adjust the power angle and voltage modulation index of the inverter; therefore, controlling the inverter’s active and reactive output power, respectively. A fuzzy logic controller (FLC) is also implemented to manage the inverter’s operation during the LVRT operation. The FLC adjusts (or de-rates) the inverter’s reference active and reactive power commands based on the grid voltage sag and the power available from the PV system. Therefore, the inverter operation has been divided into two modes: (i) Maximum power point tracking (MPPT) during the normal operating conditions of the grid, and (ii) LVRT support when the grid is operating under faulty conditions. In the LVRT mode, the de-rating of the inverter active output power allows for injection of some reactive power, hence providing voltage support to the grid and enhancing the utilization factor of the inverter’s capacity. The proposed system was modelled and simulated using MATLAB Simulink. The simulation results showed good system performance in response to changes in reference power command, and in adjusting the amount of active and reactive power injected into the grid.


Author(s):  
Sanjay Lakshminarayanan ◽  
Kiran Kumar B M ◽  
S. Nagaraja Rao ◽  
Pranupa S.

The aim of this paper is to explore the use of various current mode control (CMC) techniques to design a single phase grid tie inverter integrated with anti-islanding protection. Three types of CMC techniques have been discussed, namely current hysteresis control (CHC), constant frequency control (CFC) and average current mode control (ACMC). The performance of the grid tie inverter in the event of grid voltage failure is also studied to help install an anti-islanding mechanism. The proposed control techniques shall eliminate the use of Phase locked loop (PLL) control as the current reference is generated from the grid voltage itself. All three current mode control techniques of an inverter have been simulated in MATLAB/Simulink to evaluate the performance of the designed inverter. The simulated results show a current THD of less than 5% in all three methods and a good anti-islanding response.


Sign in / Sign up

Export Citation Format

Share Document