DTC-SVM Control for Permanent Magnet Synchronous Generator based Variable Speed Wind Turbine

Author(s):  
Youness El Mourabit ◽  
Aziz Derouich ◽  
Abdelaziz El Ghzizal ◽  
Najib El Ouanjli ◽  
Othmane Zamzoum

<span lang="EN-US">In this paper, we are interested in improving the production efficiency for electric energy extracted from a wind turbine, based on a permanent magnet synchronous generator (PMSG) that we want to improve the performance by means of direct torque control with space vector modulation (DTC-SVM). The choice of this control comes from the deficiencies inherent to the conventional DTC, which includes variable switching frequency, torque ripple and implementation complexity. First we focuse on the wind energy conversion system (WECS) modeling using the PMSG machine, as well as the detailed study for the control DTC-SVM operating principle. Then, system performance is tested and compared by simulation in the MATLAB/Simulink in terms of follow instructions, robustness to the variations of the external system elements, and effectiveness of the expected method.</span>

Author(s):  
Xiaoxin Hou ◽  
Mingqian Wang ◽  
Guodong You ◽  
Jinming Pan ◽  
Xiating Xu ◽  
...  

The traditional direct torque control system of permanent magnet synchronous motor has many problems, such as large torque ripple and variable switching frequency. In order to improve the dynamic and static performance of the control system, a new torque control idea and speed sensorless control scheme are proposed in this paper. First, by deriving the equation of torque change rate, an improved torque controller is designed to replace the torque hysteresis controller of the traditional direct torque control. The improved direct torque control strategy can significantly reduce the torque ripple and keep the switching frequency constant. Then, based on the improved direct torque control and considering the sensitivity of the stator resistance to temperature change, a speed estimator based on the model reference adaptive method is designed. This method realizes the stator resistance on-line identification and further improves the control precision of the system. The performance of the traditional direct torque control and the improved direct torque control are compared by simulation and experiment under different operating conditions. The simulation and experimental results are presented to support the validity and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document