scholarly journals Decoupled Feed Forward Voltage Oriented Controller For DFIG Under Balanced And Unbalanced Fault Conditions

2015 ◽  
Vol 15 (2) ◽  
pp. 209
Author(s):  
Dileep Kumar Varma ◽  
Y. P. Obulesh ◽  
Ch. Sai Babu

As wind power penetration increases continuously in total Power Generation, the wind turbines are necessary to stay connected to grid even under grid disturbances. An enhanced control strategy for DFIG is proposed in the present paper to meet the latest grid codes set by grid operators. The decoupled current controller implemented in grid voltage oriented reference frame is applied to Grid Side Converter (GSC) to improve the dynamic performance of DFIG. The proposed scheme enhances the Low Voltage ride through capability of Wind farm by providing reactive Power support under adverse grid conditions. The Proposed scheme also counteracts the ripples in DC Link voltage, stator/rotor currents and stator/reactive power to fulfill the grid code commitments in weak grid.Simulation results are presented to verify the feasibility and robustness of the proposed control scheme.

2021 ◽  
Vol 233 ◽  
pp. 01025
Author(s):  
Yingfeng Zhu ◽  
Xiaosu Xie ◽  
Dong Yang ◽  
Song Gao ◽  
Weichao Zhang ◽  
...  

Doubly fed induction generator (DFIG) wind power generation system is widely used in wind farm all over the world. Reactive power can be generated both in grid-side converter and generator-side converter of DFIG. In this paper, working principle and control method of DFIG are introduced, and the reactive power limit of DFIG is derived, finally reactive power regulation is simulated in Simulink.


2013 ◽  
Vol 860-863 ◽  
pp. 319-323 ◽  
Author(s):  
Xin Yao Zhu ◽  
Hai Shun Sun ◽  
Jin Yu Wen

This paper investigates the subsynchronous interactions (SSI) in DFIG-based wind farm and turbine-generator (T-G) bundled system which is integrated through series compensated transmission line, the results reveal that the integration of DFIG-based wind farm could improve the subsynchronous resonance (SSR) damping of the nearby turbine-generators. Then supplemental controls of DFIG-based wind farm are used to mitigate subsynchronous control interaction (SSCI) of the DFIG and multi-mode SSR of the nearby turbine-generators. The supplemental controls are added to the reactive power control loop of GSC (grid side converter) for DFIG. Given that no additional device is needed, this supplemental control could be the most promising measure for SSR and SSCI mitigating.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3906
Author(s):  
Hesong Cui ◽  
Xueping Li ◽  
Gongping Wu ◽  
Yawei Song ◽  
Xiao Liu ◽  
...  

The ESS is considered as an effective tool for enhancing the flexibility and controllability of a wind farm, and the optimal control scheme of a wind farm with distributed ESSs is vital to the stable operation of wind power generation. In this paper, a coordinated active and reactive power control strategy based on model predictive control (MPC) is proposed for doubly fed induction generator (DFIG)-based wind farm (WF) with distributed energy storage systems (ESSs). The proposed control scheme coordinates the active and reactive power output among DFIG wind turbines (WTs), grid-side converters (GSCs), and distributed ESSs inside the WF, and the aim is to decrease fatigue loads of WTs, make the WT terminal voltage inside the extent practicable, and take the WF economic operation into consideration. Moreover, the best reactive power references of DFIG stator and GSC are produced independently based on their dynamics. At last, the control scheme generates optimal power references for all ESS to make the SOC of each ESS converge to their average state. With the distributed ESSs, the WF controller regulates the WTs inside WF more flexibly. A WF composed of 10 DFIG WTs was utilized to verify the control performance of the proposed coordinated active and reactive power control strategy.


2011 ◽  
Vol 130-134 ◽  
pp. 2851-2854
Author(s):  
He Ping Zou ◽  
Peng Yu ◽  
Hui Sun ◽  
Ji Yan Zou ◽  
Jian Liu ◽  
...  

This paper proposes a low voltage ride through (LVRT) scheme of doubly fed induction generator (DFIG) based on the supercapacitors energy storage. The novel control strategy of the bi-directional converter and the grid side converter is established. Simulation model of the DFIG system is developed. Simulation results show that the presented scheme can efficiently reduce the DC-link overvoltage, supply reactive power to the power system through grid side converter, and help grid recovery under system fault, improving the LVRT capability of the system.


2021 ◽  
Vol 4 (2) ◽  
pp. 33
Author(s):  
Jannatul Mawa Akanto ◽  
Md. Rifat Hazari ◽  
Mohammad Abdul Mannan

According to the grid code specifications, low voltage ride-through (LVRT) is one of the key factors for grid-tied wind farms (WFs). Since fixed-speed wind turbines with squirrel cage induction generators (FSWT-SCIGs) require an adequate quantity of reactive power throughout the transient period, conventional WF consisting of SCIG do not typically have LVRT capabilities that may cause instability in the power system. However, variable-speed wind turbines with doubly fed induction generators (VSWT-DFIGs) have an adequate amount of LVRT enhancement competency, and the active and reactive power transmitted to the grid can also be controlled. Moreover, DFIG is quite expensive because of its partial rating (AC/DC/AC) converter than SCIG. Accordingly, combined installation of both WFs could be an effective solution. Hence, this paper illustrated a new rotor-side converter (RSC) control scheme, which played a significant role in ensuring the LVRT aptitude for a wide range of hybrid WF consisting of both FSWT-SCIGs and VSWT-DFIGs. What is more, the proposed RSC controller of DFIG was configured to deliver an ample quantity of reactive power to the SCIG during the fault state to make the overall system stable. Simulation analyses were performed for both proposed and traditional controllers of RSC of the DFIG in the PSCAD/EMTDC environment to observe the proposed controller response. Overall, the presented control scheme could guarantee the LVRT aptitude of large-scale SCIG.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1121
Author(s):  
Rozmysław Mieński ◽  
Przemysław Urbanek ◽  
Irena Wasiak

The paper includes the analysis of the operation of low-voltage prosumer installation consisting of receivers and electricity sources and equipped with a 3-phase energy storage system. The aim of the storage application is the management of active power within the installation to decrease the total power exchanged with the supplying network and thus reduce energy costs borne by the prosumer. A solution for the effective implementation of the storage system is presented. Apart from the active power management performed according to the prosumer’s needs, the storage inverter provides the ancillary service of voltage regulation in the network according to the requirements of the network operator. A control strategy involving algorithms for voltage regulation without prejudice to the prosumer’s interest is described in the paper. Reactive power is used first as a control signal and if the required voltage effect cannot be reached, then the active power in the controlled phase is additionally changed and the Energy Storage System (ESS) loading is redistributed in phases in such a way that the total active power set by the prosumer program remains unchanged. The efficiency of the control strategy was tested by means of a simulation model in the PSCAD/EMTDC program. The results of the simulations are presented.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2021 ◽  
Author(s):  
Yuehui Chen ◽  
Zhao Huang ◽  
Zhenfeng Duan ◽  
Pengwu Fu ◽  
Guandong Zhou ◽  
...  

This paper solves the problem of reactive power and harmonics compensation in a high-voltage (HV) distribution network supplying nonlinear loads. An inductive filtering (IF) approach where passive filters connect to the filtering winding of a four-winding inductive filtering transformer (FW-IFT) is presented to enhance the power quality of the public grid. This method can not only greatly suppress harmonic currents of the medium and/or low-voltage (LV) side, but also prevent them from flowing into the public grid. The new main circuit topology, where the FW-IFT has specific filtering winding by adopting the ampere-turn balance of the transformer, is presented. On the basis of the structure of the FW-IFT, the magnetic potential balanced equation and inductive filtering technology, its equivalent circuit and mathematical model are established, and the filtering performances are analyzed in detail. Simulation and experimental results rated at SN-10/0.38 of the FW-IFT are presented to prove the efficacy of the comprehensive enhancement of power quality on the grid side.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Mojtaba Nasiri ◽  
Saleh Mobayen ◽  
Quan Min Zhu

In recent years, the complexities of wind turbine control are raised while implementing grid codes in voltage sag conditions. In fact, wind turbines should stay connected to the grid and inject reactive power according to the new grid codes. Accordingly, this paper presents a new control algorithm based on super-twisting sliding mode for a gearless wind turbine by a permanent magnet synchronous generator (PMSG). The PMSG is connected to the grid via the back-to-back converter. In the proposed method, the machine side converter regulates the DC-link voltage. This strategy improves low-voltage ride through (LVRT) capability. In addition, the grid side inverter provides the maximum power point tracking (MPPT) control. It should be noted that the super-twisting sliding mode (STSM) control is implemented to effectively deal with nonlinear relationship between DC-link voltage and the input control signal. The main features of the designed controller are being chattering-free and its robustness against external disturbances such as grid fault conditions. Simulations are performed on the MATLAB/Simulink platform. This controller is compared with Proportional-Integral (PI) and the first-order sliding mode (FOSM) controllers to illustrate the DC-link voltage regulation capability in the normal and grid fault conditions. Then, to show the MPPT implementation of the proposed controller, wind speed is changed with time. The simulation results show designed STSM controller better performance and robustness under different conditions.


Sign in / Sign up

Export Citation Format

Share Document