scholarly journals Combining mutations that modulate inter-subunit interactions and proteolytic inactivation enhance the stability of factor VIIIa

2014 ◽  
Vol 112 (07) ◽  
pp. 43-52 ◽  
Author(s):  
Hironao Wakabayashi ◽  
Jennifer M. Wintermute ◽  
Philip J. Fay

SummaryFVIIIa is labile due to the dissociation of A2 subunit. Previously, we introduced hydrophobic mutations at select A1/A2/A3 subunit interfaces yielding more stable FVIII(a) variants. Separately we showed that altering the sequence flanking the primary FXa cleavage site in FVIIIa (Arg336) yielded reduced rates of proteolytic inactivation of FVIIIa. In this study we prepared the FXa-cleavage resistant mutant (336(P4-P3’)562) combined with mutations of Ala108Ile, Asp519Val/ Glu665Val or Ala108Ile/Asp519Val/Glu665Val and examined the effects of these combinations relative to FVIII thermal stability, rates of FVIIIa decay and proteolytic inactivation of FVIIIa by FXa. Thermal decay rates for 336(P4-P3’)562/Ala108Ile, 336(P4-P3’)562/Asp519Val/ Glu665Val, and 336(P4-P3’)562/Ala108Ile/Asp519Val/Glu665Val variants were reduced by ∼2– to 5-fold as compared with wild-type (WT) primarily reflecting the effects of the A domain interface mutations. FVIIIa decay rates for 336(P4-P3’)562/Asp519Val/Glu665Val and 336(P4-P3’)562/Ala108Ile/Asp519Val/Glu665Val variants were reduced by ∼25 fold, indicating greater stability than the control Asp519Val/Glu665Val variant (∼14-fold). Interestingly, 336(P4-P3’)562/Asp519Val/Glu665Val and 336(P4-P3’)562/Ala108Ile/ Asp519Val/Glu665Val variants showed reduced FXa-inactivation rates compared with the 336(P4-P3’)562 control (∼4-fold), suggesting A2 subunit destabilisation is a component of proteolytic inactivation. Thrombin generation assays using the combination variants were similar to the Asp519Val/Glu665Val control. These results indicate that combining multiple gain-of-function FVIII mutations yields FVIII variants with increased stability relative to a single type of mutation.

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3884
Author(s):  
Andrew Rennison ◽  
Jakob R. Winther ◽  
Cristiano Varrone

Polyethylene terephthalate (PET) is the most widely used polyester plastic, with applications in the textile and packaging industry. Currently, re-moulding is the main path for PET recycling, but this eventually leads to an unsustainable loss of quality; thus, other means of recycling are required. Enzymatic hydrolysis offers the possibility of monomer formation under mild conditions and opens up alternative and infinite recycling paths. Here, IsPETase, derived from the bacterium Ideonella sakaiensis, is considered to be the most active enzyme for PET degradation under mild conditions, and although several studies have demonstrated improvements to both the stability and activity of this enzyme, stability at even moderate temperatures is still an issue. In the present study, we have used sequence and structure-based bioinformatic tools to identify mutations to increase the thermal stability of the enzyme so as to increase PET degradation activity during extended hydrolysis reactions. We found that amino acid substitution S136E showed significant increases to activity and stability. S136E is a previously unreported variant that led to a 3.3-fold increase in activity relative to wild type.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1016-1016
Author(s):  
Hironao Wakabayashi ◽  
Amy E Griffiths ◽  
Philip Fay

Abstract Factor VIII consists of a heavy chain (A1A2B domains) and light chain (A3C1C2 domains), while the contiguous A1A2 domains are separate subunits in the cofactor, factor VIIIa. The intrinsic instability of the cofactor results from weak affinity interactions of the A2 subunit within factor VIIIa. Recently we reported that procofactor stability at elevated temperature and cofactor stability over an extended time course were increased following replacement of individual charged residues (Asp(D)519, Glu(E)665, or Glu(E)1984) with either Ala (A) or Val (V) (Wakabayashi et al., Blood, 2008, in press). These mutations did not appreciably affect factor VIII specific activity or thrombin generation parameters. Factor VIII structure studies suggest D519 is buried at the A1/A2 domain interface, while E665 and E1984 localize at the A2/A3 domain interface. In the current study we generated combination mutants at these three sites to examine any additive and/or synergistic effect of these mutations. Factor VIII variants generated included double mutants with a mutation at D519 and mutation at either E665 or E1984 (Group A), double mutants with a mutation at E665 and mutation at E1984 (Group B), and triple mutants with a mutation at D519 and mutations at both E665 and E1984 (Group C). Most of the mutants retained normal specific activity values compared to wild type (WT) with exceptions noted for E665A/E1984A, E665A/E1984V and D519V/E665V/E1984V which showed ~2-fold reductions in this parameter. Studies assessing factor VIII stability involved monitoring the rates of loss of factor VIII activity by factor Xa generation assay following incubation of factor VIII (4 nM) at 55ºC. The rate of decay of factor VIIIa was monitored over time at 23ºC using the factor Xa generation assay following activation of factor VIII (1.5 nM) with thrombin. Data were fitted to single exponential decay equations and rates of decay were compared. The Group A variants D519A/E665A, D519A/D665V, and D519V/E665V showed significant enhancement (up to ~1.3-fold for the D519A/D665V variant) in factor VIII thermal stability as compared with the best single mutation in that pairing, and representing actual decay rates that approached 45% the WT value. On the other hand, the relative factor VIII decay rates for three of the four of the Group B mutants were somewhat increased compared with the best single mutation in the pairing. No significant changes were observed for the Group C mutants. Evaluation of factor VIIIa stability revealed large enhancements of up to ~4-fold compared with the single mutants for all of the Group A variants. Group B variants yielded poorer results when compared with the better individual mutation in the pairing. The triple mutations (Group C) showed the largest factor VIIIa stability enhancements with maximal stability observed for D519V/E665V/E1984A, which showed a decay rate that was ~10% the WT value. A calibrated thrombin generation assay using a fluorogenic substrate was performed on selected mutants using a sub-physiologic factor VIII concentration (0.2 nM). Enhancements in selected parameter values were observed for the D519V/E665V variant (~2.3-fold increase in the peak height and ~1.5-fold increase in endogenous thrombin potential compared with WT), while the D519A/E665V, D519V/E1984A, and D519V/E665V/E1984A variants showed 1.2 to 1.7-fold increases in these parameter values. These observations may suggest a greater capacity for thrombin generation per unit concentration factor VIII for these variants. Overall, these results indicate that selected combinations of mutations to reduce charge and/or increase hydrophobicity at the A2/A1 and A2/A3 domain interfaces yield factor VIII reagents with improved stability parameters.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3572-3572
Author(s):  
Hironao Wakabayashi ◽  
Jennifer Wintermute ◽  
Philip J. Fay

Abstract Factor (F) VIIIa serves as a cofactor for FIXa forming intrinsic FXase complex. The activity of FVIIIa is labile due to the tendency for A2 subunit of the cofactor to dissociate, thereby inactivating FVIIIa and dampening FXase activity. Recently we have shown that a combination of hydrophobic point mutations generated FVIII(a) variants with improved FVIII thermal stability and enhanced A2 subunit retention in FVIIIa (Wakabayashi et al. J. Thromb. Haemost. 2012, 10: 492-495). Furthermore, FVIIIa is a target for proteolytic inactivation catalyzed by FXa, the product of FXase complex. We have shown this proteolysis further contributes to the down-regulation of FXase and that altering the sequence flanking the primary FXa cleavage site in FVIIIa (at Arg336) yields marked reductions in the rates of proteolytic inactivation of FVIIIa catalyzed by FXa (DeAngelis et al. J. Biol. Chem. 2012, 287: 15409-15417). In this study we prepared various combinations of the above mutations to obtain a panel of novel FVIII molecules and examined the attributes of these reagents in assays monitoring FVIII thermal stability, FVIIIa spontaneous decay rates, rates of proteolytic inactivation by FXa, and thrombin generation potential. The mutants we prepared include 336(P4-P3’)562 [where residues 333-339 (PQLRMKN) that flank the fast FXa-cleavage site at Arg336 are replaced with residues flanking the slow cleavage site at Arg562 (residues 559-565, VDQRGNQ)] are combined with D519V/E665V (336-V) or D519/VE665V/A108I (336-VI). Specific activity values for the combined mutation variants ranged from 85% to 170% the WT value using a one-stage clotting assay and 95% to 110% using a two-stage chromogenic assay. FVIII thermal stability was tested by monitoring FVIII activity remaining during incubation at 57ºC over a 20 min time course. Thermal decay rates for 336-V and 336-VI variants were reduced by ∼1.7 and ∼5-fold as compared with the WT FVIII value. These rate values reflected additive effects of the individual mutations since rate values for controls FVIII D519V/E665V and FVIII A108I were reduced ∼1.7, and ∼3-fold, respectively, relative to WT, while the thermal decay rate for FVIII 336(P4-P3’)562 was WT-like. FVIIIa spontaneous decay rates were determined following activation of FVIII by thrombin and these values were reduced by ∼25-fold for the 336-V and 336-VI variants as compared with the WT FVIIIa value. Interestingly, this magnitude of rate reduction suggested a synergistic effect since rate values were reduced ∼14-fold for the D519V/E665V control and were essentially unaffected in the 336(P4-P3’)562 and A108I controls. FVIIIa inactivation by FXa was monitored by a one-stage clotting assay after FVIIIa was incubated with 5 nM FXa at 37ºC for a 30 min time course. FVIII 336-V and 336-VI variants showed similar resistance to inactivation by FXa (∼10-fold reduced rate compared with WT FVIIIa) as the 336(P4-P3’)562 control. FVIII D519V/E665V and A108I variants showed slightly reduced inactivation rates (∼1.1 and 1.6 fold) as compared with WT FVIII. Thrombin generation assays were performed using FVIII deficient plasma. Assays were run using 0.25 nM FVIII and 4 µM phospholipid vesicles, initiated with 0.25 pM tissue factor, and the amount of generated thrombin was calculated overtime by monitoring the development of fluorescent thrombin substrate peptide. FVIII 336-V and 336-VI variants generated comparable amounts of thrombin as FVIII D519V/E665V, showing ∼70% increases in endogenous thrombin potential (ETP), while the A108I and 336(P4-P3’)562 controls showed WT-like ETP values. Taken together, these results indicate that it is possible to combine the above gain-of-function FVIII mutations to yield FVIII variants such as the 336-VI form in order to generate a more stable procofactor as judged by improved thermal stability (∼5-fold relative to WT), enhanced retention of A2 subunit increasing FVIIIa stability (∼25 fold) and increased resistance to proteolytic inactivation (∼10 fold). The latter two attributes would potentially prolong FXase activity during clotting and this effect is suggested by the improved thrombin generation parameters for this variant. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 112 (09) ◽  
pp. 495-502 ◽  
Author(s):  
Amy Griffiths ◽  
Jennifer Wintermute ◽  
Philip Fay ◽  
Morgan Monaghan ◽  
Hironao Wakabayashi

SummaryFactor (F)VIIIa, a heterotrimer comprised of A1, A2, and A3C1C2 subunits, is labile due to the tendency of the A2 subunit to dissociate from the A1/A3C1C2 dimer. As dissociation of the A2 subunit inactivates FVIIIa activity, retention of A2 defines FVIIIa stability and thus, FXase activity. Earlier results showed that replacing residues D519, E665, and E1984 at the A2 domain interface with Ala or Val reduced rates of FVIIIa decay, increasing FXa and thrombin generation. We now show the enhanced FVIIIa stability of these variants results from increases in inter-A2 subunit affinity. Using a FVIIIa reconstitution assay to monitor inter-subunit affinity by activity regeneration, the apparent Kd value for the interaction of wild-type (WT) A2 subunit with WT A1/A3C1C2 dimer (43 ± 2 nM) was significantly higher than values observed for the A2 point mutants D519A/V, E665A/V, and E1984A/V which ranged from ~5 to ~19 nM. Val was determined to be the optimal hydrophobic residue at position 665 (apparent Kd = 5.1 ± 0.7 nM) as substitutions with Ile or Leu at this position increased the apparent Kd value by ~3- and ~7-fold, respectively. Furthermore, the double mutant (D519V/E665V) showed an ~47-fold lower apparent Kd value (0.9 ± 0.6 nM) than WT. Thus these hydrophobic mutations at the A2 subunit interfaces result in high binding affinities for the A2 subunit and correlate well with previously observed reductions in rates in FVIIIa decay.


2020 ◽  
Vol 117 (32) ◽  
pp. 19245-19253 ◽  
Author(s):  
Soumyadip Sahu ◽  
Zhenzhen Wang ◽  
Xinfu Jiao ◽  
Chunfang Gu ◽  
Nikolaus Jork ◽  
...  

Regulation of enzymatic 5′ decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5′ decapping promotes accumulation of mRNAs into processing (P) bodies—membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7(5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout ofPPIP5Ks(diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e.,PPIP5KKO), which elevates cellular 5-InsP7levels by two- to threefold (i.e., within the physiological rheostatic range). ThePPIP5KKO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.


Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 667-678
Author(s):  
Mary Lee S Ledbetter ◽  
Rollin D Hotchkiss

ABSTRACT A sulfonamide-resistant mutant of pneumococcus, sulr-c, displays a genetic instability, regularly segregating to wild type. DNA extracts of derivatives of the strain possess transforming activities for both the mutant and wild-type alleles, establishing that the strain is a partial diploid. The linkage of sulr-c to strr-61, a stable chromosomal marker, was established, thus defining a chromosomal locus for sulr-c. DNA isolated from sulr-c cells transforms two mutant recipient strains at the same low efficiency as it does a wild-type recipient, although the mutant property of these strains makes them capable of integrating classical "low-efficiency" donor markers equally as efficiently as "high efficiency" markers. Hence sulr-c must have a different basis for its low efficiency than do classical low efficiency point mutations. We suggest that the DNA in the region of the sulr-c mutation has a structural abnormality which leads both to its frequent segregation during growth and its difficulty in efficiently mediating genetic transformation.


Genetics ◽  
1974 ◽  
Vol 76 (2) ◽  
pp. 289-299
Author(s):  
Margaret McCarron ◽  
William Gelbart ◽  
Arthur Chovnick

ABSTRACT A convenient method is described for the intracistronic mapping of genetic sites responsible for electrophoretic variation of a specific protein in Drosophila melanogaster. A number of wild-type isoalleles of the rosy locus have been isolated which are associated with the production of electrophoretically distinguishable xanthine dehydrogenases. Large-scale recombination experiments were carried out involving null enzyme mutants induced on electrophoretically distinct wild-type isoalleles, the genetic basis for which is followed as a nonselective marker in the cross. Additionally, a large-scale recombination experiment was carried out involving null enzyme rosy mutants induced on the same wild-type isoallele. Examination of the electrophoretic character of crossover and convertant products recovered from the latter experiment revealed that all exhibited the same parental electrophoretic character. In addition to documenting the stability of the xanthine dehydrogenase electrophoretic character, this observation argues against a special mutagenesis hypothesis to explain conversions resulting from allele recombination studies.


Sign in / Sign up

Export Citation Format

Share Document