Mechanism and functional impact of CD40 ligand-induced von Willebrand factor release from endothelial cells

2015 ◽  
Vol 113 (05) ◽  
pp. 1095-1108 ◽  
Author(s):  
Kerstin Möller ◽  
Oliver Adolph ◽  
Jennifer Grünow ◽  
Julia Elrod ◽  
Miruna Popa ◽  
...  

SummaryCo-stimulation via CD154 binding to CD40, pivotal for both innate and adaptive immunity, may also link haemostasis to vascular remodelling. Here we demonstrate that human platelet-bound or recombinant soluble CD154 (sCD154) elicit the release from and tethering of ultra-large (UL) von Willebrand factor (vWF) multimers to the surface of human cultured endothelial cells (ECs) exposed to shear stress. This CD40-mediated ULVWF multimer release from the Weibel-Palade bodies was triggered by consecutive activation of TRAF6, the tyrosine kinase c-Src and phospholipase Cγ1 followed by inositol-1,4,5 tris-phosphate-mediated calcium mobilisation. Subsequent exposure to human washed platelets caused ULVWF multimer-platelet string formation on the EC surface in a shear stress-dependent manner. Platelets tethered to these ULVWF multimers exhibited P-selectin on their surface and captured labelled monocytes from the superfusate. When exposed to shear stress and sCD154, native ECs from wild-type but not CD40 or vWF-deficient mice revealed a comparable release of ULVWF multimers to which murine washed platelets rapidly adhered, turning P-selectin-positive and subsequently capturing monocytes from the perfusate. This novel CD154-provoked ULVWF multimerplatelet string formation at normal to fast flow may contribute to vascular remodelling processes requiring the perivascular or intravascular accumulation of pro-inflammatory macrophages such as arteriogenesis or atherosclerosis.

2018 ◽  
Vol 115 (24) ◽  
pp. E5556-E5565 ◽  
Author(s):  
Miruna Popa ◽  
Sibgha Tahir ◽  
Julia Elrod ◽  
Su Hwan Kim ◽  
Florian Leuschner ◽  
...  

Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis. Human ECs grown in a parallel plate flow chamber for live-cell imaging or Transwell permeable supports for transmigration assay were exposed to fluid or orbital shear stress and CD154. Human isolated platelets and/or monocytes were superfused over or added on top of the EC monolayer. Plasma levels and activity of the ULVWF multimer-cleaving protease ADAMTS13 were compared between coronary artery disease (CAD) patients and controls and were verified by the bioassay. Two-photon intravital microscopy was performed to monitor CD154-dependent leukocyte recruitment in the cremaster microcirculation of ADAMTS13-deficient versus wild-type mice. CD154-induced ULVWF multimer–platelet string formation on the EC surface trapped monocytes and facilitated transmigration through the EC monolayer despite high shear stress. Two-photon intravital microscopy revealed CD154-induced ULVWF multimer–platelet string formation preferentially in venules, due to strong EC expression of CD40, causing prominent downstream leukocyte extravasation. Plasma ADAMTS13 abundance and activity were significantly reduced in CAD patients and strongly facilitated both ULVWF multimer–platelet string formation and monocyte trapping in vitro. Moderate ADAMTS13 deficiency in CAD patients augments CD154-mediated deposition of platelet-decorated ULVWF multimers on the luminal EC surface, reinforcing the trapping of circulating monocytes at atherosclerosis predilection sites and promoting their diapedesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3063-3063
Author(s):  
Wenhua Zhou ◽  
Han-Mou Tsai

Abstract Abstract 3063 Poster Board II-1039 ADAMTS13 is a circulating metalloprotease that cleaves and down regulates the activity of von Willebrand factor (VWF) in the circulation. Deficiency of ADAMTS13 causes thrombotic thrombocytopenic purpura (TTP). VWF is critical for supporting platelet adhesion and aggregation at sites of microvascular injury. Nevertheless, the factors that protect VWF from cleavage by ADAMTS13 remain unknown. Thrombospondin-1 (Thbs-1), an adhesive protein that exhibit binding to multiple proteins such as collagen, fibronectin and fibrin, promotes thrombus adherence in animal models of vascular injury. To investigate the role of Thbs-1 in the regulation of VWF cleavage by ADAMTS13, we analyzed the cleavage of VWF flowing through a capillary tube. In the presence of physiological concentrations of ADAMTS13, VWF fragments were generated in a shear stress dependent manner. The cleavage of VWF in the capillary tube device was inhibited by Thbs-1 in a concentration dependent manner. At physiological concentrations (30 ng/mL) of Thbs-1, the cleavage of VWF was decreased insignificantly to 85% of control. The cleavage was decreased to 50% at 100 ng/mL Thbs-1, and to less than 10% at 1000 ng/mL Thbs-1 (P<0.0001). The suppressive effect of Thbs-1 was also observed with a truncated variant of ADAMTS13 that lacks the distal six thrombospondin type 1 repeats and the CUB domains, suggesting that the C-terminal part of ADAMTS13 is not necessary for the suppressive effect of Thbs-1. Furthermore, the presence of platelets did not negate the suppressive effect of Thbs-1 on VWF cleavage. Thbs-1 did not suppress the cleavage of FRET-VWF73 or guanidine hydrochloride treated VWF. It also did not affect the cleavage of VWF multimers induced by vortexing in the presence of ADAMTS13 and platelets. In summary, the suppressive effect of Thbs-1 on VWF cleavage is shear stress dependent. Thbs-1 is not expected to play a major role in regulating the size of circulating VWF multimers. Nevertheless, high concentrations of Thbs-1 released from platelets may protect sheared VWF from cleavage by ADAMTS13. This protective effect of Thbs-1 on VWF proteolysis may help stabilize the hemostatic plugs at sites of microvascular injury. Disclosures No relevant conflicts of interest to declare.


1996 ◽  
Vol 75 (04) ◽  
pp. 655-660 ◽  
Author(s):  
Mario Mazzucato ◽  
Luigi De Marco ◽  
Paola Pradella ◽  
Adriana Masotti ◽  
Francesco I Pareti

SummaryPorcine von Willebrand factor (P-vWF) binds to human platelet glycoprotein (GP) lb and, upon stirring (1500 rpm/min) at 37° C, induces, in a dose-dependent manner, a transmembrane flux of Ca2+ ions and platelet aggregation with an increase in their intracellular concentration. The inhibition of P-vWF binding to GP lb, obtained with anti GP lb monoclonal antibody (LJ-Ib1), inhibits the increase of intracellular Ca2+ concentration ([Ca2+]i) and platelet aggregation. This effect is not observed with LJ-Ib10, an anti GP lb monoclonal antibody which does not inhibit the vWF binding to GP lb. An anti GP Ilb-IIIa monoclonal antibody (LJ-CP8) shown to inhibit the binding of both vWF and fibrinogen to the GP IIb-IIIa complex, had only a slight effect on the [Ca2+]i rise elicited by the addition of P-vWF. No inhibition was also observed with a different anti GP IIb-IIIa monoclonal antibody (LJ-P5), shown to block the binding of vWF and not that of fibrinogen to the GP IIb-IIIa complex. PGE1, apyrase and indomethacin show a minimal effect on [Ca2+]i rise, while EGTA completely blocks it. The GP lb occupancy by recombinant vWF fragment rvWF445-733 completely inhibits the increase of [Ca2+]i and large aggregates formation. Our results suggest that, in analogy to what is seen with human vWF under high shear stress, the binding of P-vWF to platelet GP lb, at low shear stress and through the formation of aggregates of an appropriate size, induces a transmembrane flux of Ca2+, independently from platelet cyclooxy-genase metabolism, perhaps through a receptor dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of the GP IIb-IIIa complex.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 688-695 ◽  
Author(s):  
EM Paleolog ◽  
DC Crossman ◽  
JH McVey ◽  
JD Pearson

Abstract We examined the effect of cytokines on basal and agonist-stimulated release of von Willebrand factor (vWf) by human endothelial cells. Treatment of endothelial cells for up to 48 hours with human recombinant or purified interleukin 1 (IL-1) or human recombinant tumor necrosis factor-alpha (TNF-alpha) did not significantly affect constitutive secretion of vWf or intracellular levels of vWf, although basal prostacyclin (PGI2) production was markedly enhanced. In contrast, both IL-1 and TNF-alpha modulated vWf release in response to thrombin or phorbol ester. Pretreatment of endothelial cells for 2 hours with either cytokine enhanced by up to threefold the stimulatory effect of a subsequent 60-minute exposure to thrombin. Addition of cycloheximide (5 micrograms/mL) during the preincubation abolished this enhancement. Moreover, if the cytokine pretreatment time was extended to 24 hours, agonist-stimulated vWf release was significantly suppressed. Cytokine treatment for 2 or 24 hours had no detectable effect on levels of vWf messenger RNA. The effects of cytokines were not the result of contamination with bacterial lipopolysaccharide and were not attributable to endothelial cell injury. These results show that cytokines have little or no direct effect on vWf release from endothelial cells but can significantly modulate its acute release in response to other stimuli in a complex time- and dose-dependent manner.


2020 ◽  
Vol 120 (03) ◽  
pp. 466-476
Author(s):  
Sibgha Tahir ◽  
Andreas H. Wagner ◽  
Steffen Dietzel ◽  
Hanna Mannell ◽  
Joachim Pircher ◽  
...  

Abstract Background von Willebrand factor (vWF) plays an important role in platelet activation. CD40–CD40 ligand (CD40L) induced vWF release has been described in large vessels and cultured endothelium, but its role in the microcirculation is not known. Here, we studied whether CD40 is expressed in murine microvessels in vivo, whether CD40L induces platelet adhesion and leukocyte activation, and how deficiency of the vWF cleaving enzyme ADAMTS13 affects these processes. Methods and Results The role of CD40L in the formation of beaded platelet strings reflecting their adhesion to ultralarge vWF fibers (ULVWF) was analyzed in the murine cremaster microcirculation in vivo. Expression of CD40 and vWF was studied by immunohistochemistry in isolated and fixed cremasters. Microvascular CD40 was only expressed under inflammatory conditions and exclusively in venous endothelium. We demonstrate that CD40L treatment augmented the number of platelet strings, reflecting ULVWF multimer formation exclusively in venules and small veins. In ADAMTS13 knockout mice, the number of platelet strings further increased to a significant extent. As a consequence extensive thrombus formation was induced in venules of ADAMTS13 knockout mice. In addition, circulating leukocytes showed primary and rapid adherence to these platelet strings followed by preferential extravasation in these areas. Conclusion CD40L is an important stimulus of microvascular endothelial ULVWF release, subsequent platelet string formation and leukocyte extravasation but only in venous vessels under inflammatory conditions. Here, the lack of ADAMTS13 leads to severe thrombus formation. The results identify CD40 expression and ADAMTS13 activity as important targets to prevent microvascular inflammatory thrombosis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 289-289
Author(s):  
Jing Huang ◽  
John E. Heuser ◽  
Rodger P. McEver ◽  
J. Evan Sadler

Abstract Von Willebrand factor (VWF) multimers attached to endothelial cells can provide a platform for thrombosis, especially when accompanied by ADAMTS13 deficiency. We characterized the structural features of ultralarge VWF (ULVWF) molecules acutely secreted from Weibel-Palade bodies and identified a receptor responsible for their binding to the surface of cultured human umbilical vein endothelial cells (HUVECs). Using fluorescence microscopy on live cells, VWF multimers formed extended strings within minutes after stimulation. String formation did not require exogenous platelets and occurred over a range of shear stress from 2.5 dyn/cm2 to 40 dyn/cm2. A subset of ULVWF strings spontaneously bound formalin-fixed platelets via platelet GPIb. Quick-freeze, deep-etch electron microscopy showed that ULVWF strings often merged to form bundles and networks. Each string was tethered to the endothelial membrane by a limited number of anchorage sites, many of them located on small membrane projections, suggesting a specific mode of interaction. Several independent approaches implicated integrin αvβ3 in anchoring ULVWF strings to the HUVEC surface. Either “RGDS” peptide or function blocking antibody (LM609) to integrin αvβ3 specifically and dose dependently inhibited ULVWF string formation 62 ± 0.7% and 53 ± 4%, respectively. Furthermore, integrin αv was seen decorating the extending ULVWF strings using a non-functional blocking antibody (LM142) in live-cell immunofluorescence. In addition, a lentiviral vector encoding shRNA against integrin αv resulted in approximately 70% reduction in cell surface αv expression by FACS analysis with antibody LM609. HUVEC infected with this lentivirus were significantly impaired in their ability to form ULVWF strings compared to cells infected with a control virus. In multiple experiments, shRNA knockdown of αv expression reduced ULVWF strings 75.3 ± 4.4% at 2.5dyn/cm2 and 81.6 ± 2% at 7.5dyn/cm2. These results indicated that ULVWF strings bind tightly to endothelial cells via very few anchorage sites and are relatively resistant to fluid shear stress. Although integrin αvβ3 does not appear to be required to stabilize ULVWF strings on mouse endothelium, these data suggest that integrin αvβ3 may participate in the stabilization of ULVWF strings on human endothelial cell surfaces.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2112-2112
Author(s):  
Xiaoyun Fu ◽  
Ryan P. Gallagher ◽  
Dominic Chung ◽  
Junmei Chen ◽  
José A. López

Abstract Abstract 2112 The interaction between von Willebrand factor (VWF) and the platelet glycoprotein Ib-IX-V complex mediates the first step of platelet adhesion to the vessel wall at sites of injury in the hemostatic response to blood loss. This interaction is also involved in pathologic thrombosis, the most extreme case being thrombotic thrombocytopenic purpura, but the interaction has been proposed to have important pathogenic roles in disparate syndromes such as sepsis, HELLP syndrome, antiphospholipid syndrome, acute lung injury, sickle cell anemia, and cerebral malaria. These syndromes have in common an association with severe inflammation, one of the consequences of which is production of oxidants, in particular by neutrophils. We recently showed that one of the most potent neutrophil oxidants, hypochlorous acid (HOCl), which is produced by the myeloperoxidase-catalyzed reaction of H2O2 with chloride ion, markedly reduces ADAMTS13 proteolysis of VWF by oxidizing M1606 at the ADAMTS13 cleavage site within the A2 domain of VWF (Blood, 115(3) 706-12, 2010). In that study, M1606 present in a substrate A2 peptide was readily oxidized by HOCl, but only minimally oxidized in multimeric plasma VWF, except in the presence of the denaturing agent urea. As this requirement resembled the requirement of urea for ADAMTS13 proteolysis of plasma VWF, we wondered whether the application of shear stress would similarly enhance M1606 oxidation by HOCl. Using a system containing 25 nM MPO (a plasma concentration often seem in inflammatory conditions) and varying concentrations of H2O2, we found that application of 0.6 dynes/cm2 shear stress through a closed circuit of plastic tubing rendered M1606 much more sensitive to oxidation: 80% oxidized within 1 hr. This suggestion of shear-induced unfolding and enhanced oxidation was verified when we examined 7 other methionine residues in the A1A2A3 region of VWF, the region containing the binding sites for platelets and collagen and the ADAMTS13 cleavage site. The Met residues were variably sensitive to oxidation, but all became increasingly oxidized over time in the presence of shear stress. Although the shear stresses we used in this experiment are far below the shear stress considered necessary to unfold even very large VWF multimers, the VWF solution also experienced constant elongational flow generated by a peristaltic pump, necessitating flow acceleration through the region narrowed by the rollers. Elongational flow can impart up to 100-fold more tensile stress to suspended VWF than the constant shear stress (Biophys. J., 98 L35, 2010). Two other findings favor the interpretation that oxidation of the A1A2A3 region is facilitated by domain unfolding. First, we further separated the oxidized VWF by gel-filtration into large, intermediate, and small multimeric fractions and found that methionine oxidation was much more prevalent in the fraction with the largest multimers and rare in the fraction with the smallest multimers. Second, we found that ristocetin, a VWF modulator that simulates the effect of shear stress on VWF, also accelerated oxidation of M1606. In functional tests, we found that HOCl-oxidized plasma VWF agglutinated fixed platelets at concentrations of ristocetin that induced minimal agglutination using unoxidized VWF. These findings have several important clinical implications. First, inflammatory conditions will not only activate endothelial cells and induce release of VWF, especially the largest and most adhesive forms (ultralarge VWF), the oxidants produced from endothelial cells themselves and from the neutrophil respiratory burst will render the VWF resistant to proteolysis. Second, these same oxidants will also convert the largest preexisting plasma VWF multimers that were previously rendered quiescent by ADAMTS13, into hyperfunctional and uncleavable forms. All of these mechanisms converge to generate a highly prothrombotic state, perhaps initially evolved as a mechanism to trap and isolate microorganisms, but which also has the potential to cause tremendous harm to those affected by these inflammatory conditions. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 698-698 ◽  
Author(s):  
Thomas A J Mckinnon ◽  
Richard D Starke ◽  
Kushani Ediriwickrema ◽  
Anna Maria Randi ◽  
Michael Laffan

Abstract Abstract 698 Von Willebrand Factor (VWF) is a large multimeric plasma glycoprotein essential for homeostasis, also involved in inflammation and angiogenesis. The majority of VWF is synthesised by endothelial cells (EC) and is either constitutively secreted or stored in Weibel-Palade bodies (WPB), ready to be released in response to endothelial stimulation. Several studies have shown that formation of WPB is dependent on the presence of VWF, and deletion of VWF in human umbilical vein EC (HUVEC) results in loss of WPB. Amongst the other proteins shown to co-localise to WPB is angiopoietin-2 (Ang2), a ligand of the receptor tyrosine kinase Tie-2. Ang2 regulates endothelial cell survival, vascular stability and maturation, by destabilizing quiescent endothelium and facilitating the response to inflammatory and angiogenic stimuli. VWF is required for storage of Ang2, and release of Ang-2 from EC is increased in VWF-deficient HUVEC. Recently, we have shown that VWF itself regulates angiogenesis, raising the hypothesis that some of the angiogenic activity of VWF may be mediated by Ang-2. In the present study we investigated the interaction between Ang2 and VWF. Binding analysis demonstrated that recombinant human Ang2 bound to purified plasma-derived VWF in a pH and calcium dependent manner, with optimal binding occurring at pH 6.5 and 10mM calcium, indicative of binding within the Golgi body. Generation of binding isotherms established that Ang2 bound to VWF with high affinity (KD∼3nM); furthermore binding affinity was not dependent on VWF conformation. Using an array of VWF constructs we determined that Ang2 bound predominantly to the VWF A1 domain, which also contains binding sites to the platelet receptor GPIb and extracellular matrix proteins. Co-immunoprecipitation experiments performed on TNFα- and ionomycin-stimulated HUVECs, to induce WPB exocytosis, confirmed that a portion of Ang2 remained bound to secreted VWF. Moreover, immunofluorescence staining of histamine-stimulated HUVECs to induce VWF release demonstrated the presence of Ang2 on VWF strings secreted from ECs. Finally we demonstrated that Ang2 bound to VWF was still able to interact with Tie-2. These data demonstrate that binding of Ang2 to VWF occurs within the cell; we propose that this is the mechanism mediating storage of Ang2 in WPB. Moreover, the finding that the Ang2-VWF interaction is preserved following secretion raises the intriguing possibility VWF may affect Ang2 function, possibly by localising Ang2 to the Tie 2 receptor under the shear forces experienced in flowing blood. Similarly, Ang-2 binding to VWF may modulate its interaction with receptors and extracellular matrix proteins, and ultimately influence the role of VWF in the angiogenic processes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4235-4244 ◽  
Author(s):  
HM Tsai

von Willebrand factor (vWF) in the circulation is subjected to proteolysis. In a recent study, we reported that normal plasma contains a protease activity that cleaves vWF in a shear-dependent manner, causing a decrease in its multimer size while generating dimers of the 140-kD and the 176-kD fragments indistinguishable from those found in normal plasma. In this study, the plasma protease has been partially purified and characterized and the role of vWF conformation in its cleavage by the protease has been further investigated. Guanidine HCl caused unfolding of vWF in a concentration-dependent manner, resulting in a shift in its fluorescence emission maxima to longer wavelengths. A dramatic increase in its proteolytic susceptibility was seen at 1.1 to 1.2 mol/L guanidine HCl, a concentration causing only a 3- to 4-nm shift in vWF emission maxima. Although vWF molecules refolded as guanidine HCl was removed by dialysis, the refolding was accompanied only by a partial recovery of the proteolytic resistance. The plasma protease, partially purified by approximately 900 folds by Sephacryl S- 300 HR gel filtration, Matrex gel orange A dye affinity chromatography, and Q Sepharose anion exchange, had a molecular mass of approximately 200 kD and was inhibited by EDTA, EGTA, or 1,10-phenanthroline. The inhibition by EGTA or EDTA could be reversed by Ca2+ but not by mg2+. It was not inhibited by a panel of synthetic and natural protease inhibitors or adsorbed by gelatin-agarose, and it was present in plasmas deficient in proteins involved in coagulation and anticoagulation. The vWF fragments generated by the protease, as mapped by peptide-specific antibodies VP-1 and LJ-7745, were in distinguishable from the natural fragments but distinct from those produced by plasmin. High molecular weight endothelial vWF, after exposure to guanidine HCLI or high shear stress, was cleaved by the protease to smaller forms. These results support the model that endothelial secreted vWF is converted to multimers by a novel plasma metalloproteinase. Although native vWF exists in a conformation relatively resistant to cleavage, an alteration in the conformation by shear stress can lead to enhanced proteolytic susceptibility. This model may explain the decrease in vWF multimer sizes in various clinical conditions.


Sign in / Sign up

Export Citation Format

Share Document