scholarly journals Upheaval buckling of pipelines triggered by the internal pressure resulting from the transportation of oil and gas: theoretical discussions and geometrically nonlinear analysis using Finite Element Method.

Author(s):  
Marina Vendl Craveiro
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lorena Leocádio Gomes ◽  
Felicio Bruzzi Barros ◽  
Samuel Silva Penna ◽  
Roque Luiz da Silva Pitangueira

Purpose The purpose of this paper is to evaluate the capabilities of the generalized finite element method (GFEM) under the context of the geometrically nonlinear analysis. The effect of large displacements and deformations, typical of such analysis, induces a significant distortion of the element mesh, penalizing the quality of the standard finite element method approximation. The main concern here is to identify how the enrichment strategy from GFEM, that usually makes this method less susceptible to the mesh distortion, may be used under the total and updated Lagrangian formulations. Design/methodology/approach An existing computational environment that allows linear and nonlinear analysis, has been used to implement the analysis with geometric nonlinearity by GFEM, using different polynomial enrichments. Findings The geometrically nonlinear analysis using total and updated Lagrangian formulations are considered in GFEM. Classical problems are numerically simulated and the accuracy and robustness of the GFEM are highlighted. Originality/value This study shows a novel study about GFEM analysis using a complete polynomial space to enrich the approximation of the geometrically nonlinear analysis adopting the total and updated Lagrangian formulations. This strategy guarantees the good precision of the analysis for higher level of mesh distortion in the case of the total Lagrangian formulation. On the other hand, in the updated Lagrangian approach, the need of updating the degrees of freedom during the incremental and iterative solution are for the first time identified and discussed here.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 507
Author(s):  
K. Yakoubi ◽  
S. Montassir ◽  
Hassane Moustabchir ◽  
A. Elkhalfi ◽  
Catalin Iulian Pruncu ◽  
...  

The work investigates the importance of the K-T approach in the modelling of pressure cracked structures. T-stress is the constant in the second term of the Williams expression; it is often negligible, but recent literature has shown that there are cases where T-stress plays the role of opening the crack, also T-stress improves elastic modeling at the point of crack. In this research study, the most important effects of the T-stress are collected and analyzed. A numerical analysis was carried out by the extended finite element method (X-FEM) to analyze T-stress in an arc with external notch under internal pressure. The different stress method (SDM) is employed to calculate T-stress. Moreover, the influence of the geometry of the notch on the biaxiality is also examined. The biaxiality gave us a view on the initiation of the crack. The results are extended with a comparison to previous literature to validate the promising investigations.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
AR. Veerappan ◽  
S. Shanmugam ◽  
S. Soundrapandian

Thinning and ovality are commonly observed irregularities in pipe bends, which induce higher stress than perfectly circular cross sections. In this work, the stresses introduced in pipe bends with different ovalities and thinning for a particular internal pressure are calculated using the finite element method. The constant allowable pressure ratio for different ovalities and thinning is presented at different bend radii. The allowable pressure ratio increases, attains a maximum, and then decreases as the values of ovality and thinning are increased. An empirical relationship to determine the allowable pressure in terms of bend ratio, pipe ratio, percent thinning, and percent ovality is presented. The pipe ratio has a strong effect on the allowable pressure.


1994 ◽  
Vol 18 (1-3) ◽  
pp. 329-339
Author(s):  
K. Padmanaban ◽  
C.M. Wang ◽  
N.E. Shanmugam ◽  
S.L. Lee

Sign in / Sign up

Export Citation Format

Share Document