scholarly journals Potencial fermentativo das leveduras Candida shehatae CG8-8BY e Spathaspora arborariae UFMG-HM 19.1A para a produção de etanol de segunda geração

Author(s):  
Sabrina Evelin Martiniano
Keyword(s):  
2013 ◽  
Vol 275-277 ◽  
pp. 1662-1665 ◽  
Author(s):  
Qiang Li ◽  
Juan Juan Fei ◽  
Xu Ding Gu ◽  
Geng Sheng Ji ◽  
Yang Liu ◽  
...  

This study aims to establish a natural cellulosic biomass pretreatment process using ionic liquid (IL) for efficient enzymatic hydrolysis and second generation bioethanol. The IL 1-Butyl-3-methylimidazolium Chloride/FeCl3 ([Bmim]Cl/FeCl3) was selected in view of its low temperature pretreatment ability and the potential of accelerating enzymatic hydrolysis, and it could be recyclable. The yield of reducing sugars from sugarcane residue pretreated with this IL at 80 oC for 1 h reached 46.8% after being enzymatically hydrolyzed for 24 h. Sugarcane residue regenerated were hydrolyzed more easily than that treated with water. The fermentability of the hydrolyzates, obtained after enzymatic saccharification of the regenerated sugarcane residue, was transformed into bioethanol using Candida shehatae. This microbe could absorb glucose and xylose efficiently, and the ethanol production was 0.38 g/g glucose within 30 h fermentation. In conclusion, the metal ionic liquid pretreatment in low temperature shows promise as pretreatment solvent for natural biomass.


1997 ◽  
Vol 43 (4) ◽  
pp. 362-367 ◽  
Author(s):  
M. J. R. Nout ◽  
C. E. Platis ◽  
D. T. Wicklow

Microflora in wound sites of preharvest maize (including bacteria, yeasts, and filamentous fungi) may play a role in attracting insects to maize plants and may also interact with growth and mycotoxin production by filamentous fungi. As little data are available about the yeasts occurring on maize from the U.S. corn belt, samples of milled maize from experimental plantings at the University of Illinois River Valley Sand Field were analyzed. Yeast counts showed slight yearly fluctuation and varied between 3.60 and 5.88 (log cfu/g maize). The majority of the yeasts were Candida guilliermondii (approximately 55%), Candida zeylanoides (24 %), Candida shehatae (11%), and Debaryomyces hansenii (3%). Also present were Trichosporon cutaneum, Cryptococcus albidus var. aerius, and Pichia membranifaciens. The occurrence of killer yeasts was also evaluated. Killer yeasts were detected in maize for the first time and were identified as Trichosporon cutaneum and Candida zeylanoides. These were able to kill some representative yeasts isolated from maize, including Candida guilliermondii, Candida shehatae, and Cryptococcus albidus var. aerius. Other maize yeasts (Candida zeylanoides, Debaryomyces hansenii, Pichia membranifaciens) were not affected. The majority of yeasts found on maize were unable to ferment its major sugars, i.e., sucrose and maltose. Some (e.g., Candida zeylanoides) were not even able to assimilate these sugars. The importance of these properties in relation to insect attraction to preharvest ears of maize is discussed.Key words: corn, maize, yeast, killer.


2017 ◽  
Vol 66 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Monika Kordowska-Wiater ◽  
Adam Kuzdraliński ◽  
Tomasz Czernecki ◽  
Zdzisław Targoński ◽  
Magdalena Frąc ◽  
...  

Arabitol is a polyalcohol which has about 70% of the sweetness of sucrose and an energy density of 0.2 kcal/g. Similarly to xylitol, it can be used in the food and pharmaceutical industries as a natural sweetener, a texturing agent, a dental caries reducer, and a humectant. Biotechnological production of arabitol from sugars represents an interesting alternative to chemical production. The yeast Scheffersomyces shehatae strain 20BM-3 isolated from rotten wood was screened for its ability to produce arabitol from L-arabinose, glucose, and xylose. This isolate, cultured at 28°C and 150 rpm, secreted 4.03 ± 0.00 to 7.97 ± 0.67 g/l of arabitol from 17–30 g/l of L-arabinose assimilated from a medium containing 20–80 g/l of this pentose with yields of 0.24 ± 0.00 to 0.36 ± 0.02 g/g. An optimization study demonstrated that pH 4.0, 32°C, and a shaking frequency of 150 rpm were the optimum conditions for arabitol production by the investigated strain. Under these conditions, strain 20BM-3 produced 6.2 ± 0.17 g/l of arabitol from 17.5 g/l of arabinose after 4 days with a yield of 0.35 ± 0.01 g/g. This strain also produced arabitol from glucose, giving much lower yields, but did not produce it from xylose. The new strain can be successfully used for arabitol production from abundantly available sugars found in plant biomass.


1985 ◽  
Vol 9 (4) ◽  
pp. 313-319 ◽  
Author(s):  
Elibieta Johannsen ◽  
Linda Eagle ◽  
Gail Bredenhann

2013 ◽  
Vol 361-363 ◽  
pp. 339-342 ◽  
Author(s):  
Juan Juan Fei ◽  
Qiang Li ◽  
Yuan Yuan Feng ◽  
Geng Sheng Ji ◽  
Xu Ding Gu ◽  
...  

The work is to select biocompatible ionic liquid (IL) toward in situ saccharification of cellulose and investigating the effect of enzymatic saccharification with sodium alginate immobilized cellulase. The [Mmi [DM was selected for the ionic liquid treatment improved the yield of reducing sugars and the hydrolyzates could be efficiently fermented to ethanol. The yield of reducing sugar is 89.54% for 48h. In the in situ saccharification process, the yield of sugars were 84.52% and 86.72% with immobilized cellulase and free cellulase saccharification for 48h. Then the hydrolyzates could be fermented to ethanol withCandida shehatae. The yield of ethanol was 0.42g/g glucose within 24h.


1985 ◽  
Vol 7 (12) ◽  
pp. 909-912 ◽  
Author(s):  
Morris Wayman ◽  
Sarad Parekh

Sign in / Sign up

Export Citation Format

Share Document