scholarly journals Process synthesis and optimization of syngas and ammonia production in nitrogen fertilizers complexes: energy, energy integration and CO2 emissions assessment.

Author(s):  
Daniel Alexander Florez Orrego
Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 602
Author(s):  
Tomasz Sosulski ◽  
Wojciech Stępień ◽  
Adam Wąs ◽  
Magdalena Szymańska

The paper presents the results of a laboratory experiment focused on the assessment of the effect of different methods of application of ammonium nitrate (TD—top dressing and DP—deep placement) on N2O and CO2 emissions from soil without crop cover. Nitrogen application increased soil N2O–N fluxes by 24.3–46.4%, compared to untreated soil (NIL). N2O–N emissions from TD treatment were higher by 12.7%, compared to DP treatment. Soil CO2–C fluxes from DP treatment were significantly higher by 17.2%, compared to those from NIL treatment. Nonetheless, the differences between soil CO2–C fluxes from DP and TD treatments, as well as from TD and NIL treatments, were of no statistical significance. The cumulative greenhouse gas (GHG) emissions (a sum of cumulative soil emissions of CO2–C and N2O–N after conversion to the equivalent of CO2–C) from both N-fertilized soils were similar, and higher by 20% than from untreated soil. The obtained data show that the effect of reduction of N2O–N soil emissions gained by deep placement of nitrogen fertilizer was completely lost through an increase in CO2–C emissions from the soil. This suggests that deep placement of nitrogen fertilizers in sandy soil without crop cover might not lead to a mitigation of soil GHG emissions.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e34642 ◽  
Author(s):  
Li Cheng-Fang ◽  
Zhou Dan-Na ◽  
Kou Zhi-Kui ◽  
Zhang Zhi-Sheng ◽  
Wang Jin-Ping ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 87
Author(s):  
Katherine A. McKenzie

Electric power grids in remote communities around the world tend to be highly oil-dependent, unlike large, interconnected grids. Consequently, self-contained power grids such as the Hawaiian Islands’ have become testbeds for aggressive renewable energy integration (PV, wind, and ocean energy) and transportation electrification. However, there remains a lack of critical analysis for remote communities to determine the benefits of transitioning from internal combustion engine (ICE) vehicles to plug-in electric vehicles (EVs). This case study examines the impacts of this transition to EVs and renewable power generation on fossil fuel use and CO2 emissions on the oil-dependent Island of Oahu, Hawaii. Average passenger EVs were found to consume seven times less fossil fuel (the equivalent of 66 gallons of gasoline (GGe), than their gasoline-powered counterparts (455 gallons) in 2020. Average EVs also cut emissions in half, (2 MTCO2 versus 4 MTCO2). Several renewable power and EV transition scenarios were modeled to assess impacts out to 2050. Fossil fuel use and emissions plummet with more clean power and increasing EV numbers. By 2045, in the most ambitious scenario, all gasoline- and diesel-powered vehicles (passenger and freight) will consume a total of 8.8 billion GGe, and EVs 0.090 billion GGe (1%). ICE CO2 emissions will total 80 MMT, and EVs 4.4 MMT (5.5%). By 2050, the anticipated transition to electric passenger and freight vehicles combined with renewable power will lead to 99% less fossil fuel consumed, and 93% less CO2 emitted.


2015 ◽  
Vol 107 ◽  
pp. 626-635 ◽  
Author(s):  
Joel Tallaksen ◽  
Fredric Bauer ◽  
Christian Hulteberg ◽  
Michael Reese ◽  
Serina Ahlgren

2017 ◽  
Vol 41 (5) ◽  
pp. 494-510 ◽  
Author(s):  
Taylor Lima de Souza ◽  
Douglas Ramos Guelfi ◽  
André Leite Silva ◽  
André Baldansi Andrade ◽  
Wantuir Filipe Teixeira Chagas ◽  
...  

ABSTRACT The market of stabilized, slow and controlled release nitrogen (N) fertilizers represents 1% of the world fertilizer consumption. On the other hand, the increase in availability, innovation and application of these technologies could lead to the improvement of N use efficiency in agroecossystems and to the reduction of environmental impacts. The objective of this study was to quantify agronomic efficiency relative index, ammonia volatilization, and CO2 emissions from conventional, stabilized and controlled release N fertilizers in corn summer crop. The experiment was carried out in a corn crop area located in Lavras, state of Minas Gerais, Brazil, without irrigation. All treatments were applied in topdressing at rate of 150 kg ha-1 N. N-NH3 losses from N fertilizers were: Granular urea (39% of the applied N ) = prilled urea (38%) > urea coated with 16% S0 (32%) = blend of urea + 7.9% S0 + polymers + conventional urea (32%) > prilled urea incorporated at 0.02 m depth (24%) > urea + 530 mg kg-1 of NBPT (8%) = Hydrolyzed leather (9%) > urea + thermoplastic resin (3%) = ammonium sulfate (1%) = ammonium nitrate (0.7%). Thermoplastic resin coated urea, ammonium nitrate and ammonium sulfate presented low values of cumulative CO2 emissions in corn crop. On the other hand, hydrolyzed leather promoted greater C-CO2 emission, when compared with other nitrogen fertilizers.


Sign in / Sign up

Export Citation Format

Share Document