scholarly journals Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+Stem Cells, and Mononuclear Cells Expressing Early Cardiac, Muscle, and Endothelial Markers Into Peripheral Blood in Patients With Acute Myocardial Infarction

Circulation ◽  
2004 ◽  
Vol 110 (20) ◽  
pp. 3213-3220 ◽  
Author(s):  
Wojciech Wojakowski ◽  
Michał Tendera ◽  
Anna Michałowska ◽  
Marcin Majka ◽  
Magdalena Kucia ◽  
...  
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Wojciech Wojakowski ◽  
Magda Kucia ◽  
Boguslaw Machalinski ◽  
Edyta Paczkowska ◽  
Joanna Ciosek ◽  
...  

Bone marrow-derived CD34 + CXCR4 + progenitor cells are mobilized into peripheral blood early in acute myocardial infarction (MI). Adult murine bone marrow contains population of small CD34 + lin − CD45 − CXCR4 + cells expressing markers of pluripotent stem cells (PSC) SSEA, Oct-4 and Nanog. This population of very small embryonic-like cells (VSEL) has unique morphology (small size 2– 4 μm, large nucleus, euchromatin) and capability to form embrioid bodies (EB). Murine EB-derived cells can in vitro differentiate into cells from all three germ layers including cardiomyocytes. We hypothesized that in patients with acute MI small cells expressing the VSEL immunophenotype and PSC markers are present in bone marrow and mobilized into peripheral blood. Blood samples (20 mL) from 18 patients with acute MI were obtained after 12 hours, 2 and 5 days after symptoms onset. Bone marrow samples (20 mL) were obtained from 2 patients with acute MI and 3 healthy volunteers. Mononuclear cells were isolated using hypotonic lysis and samples were analyzed by FACS. Mobilization of following cell populations was confirmed: hematopoietic lin − CD45 + CXCR4 + , lin − CD45 + CD133 + , lin − CD45 + CD34 + and non-hematopoietic (VSEL) lin − CD45 − CXCR4 + , lin − CD45 − CD133 + , lin − CD45 − CD34 + . Analysis of the cell number using lymphocyte gate showed more significant increase of CD45 + (hematopoietic) populations of lin − CD34 + , lin − CD133 + and lin − CXCR4 + cells. After gating for small events (VSEL size range) we found more significant mobilization of small, non-hematopoietic populations of lin − CD34 + , lin − CD133 + and lin − CXCR4 + cells (Table ). The expression of PSC markers (Oct-4, Nanog, SSEA-1) in VSEL was confirmed using real-time RT-PCR. Conclusion: We report for the first time that acute MI is associated with mobilization of non-hematopoietic VSELs expressing pluripotent stem cells markers.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4220-4220
Author(s):  
Martin Klabusay ◽  
Milan Navratil ◽  
Zdenek Koristek ◽  
Ladislav Groch ◽  
Jaroslav Meluzin ◽  
...  

Abstract Background: Several populations of adult stem cells have been identified in bone marrow: hematopoietic stem cells, which are able to regenerate hematopoiesis in all of its lineages, mesenchymal stem cells, which can give rise to connective tissues (bone, cartilage and fat), and endothelial progenitor cells, which can initiate angiogenesis. Adult stem cells are found within the mononuclear cells compartment of bone marrow. Recent reports describe the effect of mononuclear bone marrow cells in reparation of ischemic tissue damage. Methods: The authors designed the experimental protocol of cellular therapy for patients after acute myocardial infarction. Inclusion criteria were: first myocardial infarction treated with primary angioplasty and stent implantation, confirmed non-viability of myocardium by USG, PET and SPECT, elevated CK-MB, and age below 70 years. Patients with intervention on other coronary artery, in unstable condition at day 4 through 6, and with serious non-cardiac disease were excluded. Patients undergoing coronary angioplasty, who signed informed consent, were randomized into three arms: A - high dose of 1•108 mononuclear cells, B - low dose of 1•107 cells, C - no cells. The autologous bone marrow was collected within day 7 after infarction. The mononuclear cells were separated, cultured for 24 hours in serum-free medium, and implanted through catheter via coronary artery into the damaged heart muscle in 7 subsequent injections. Mononuclear cells were analyzed with multicolor flow cytometry and culture assays of CFU-GM and CFU-Meg. The cardiac perfusion, metabolism and function were evaluated with SPECT, PET and echocardiography at 3 months after cell implantation. Results: 31 patients enrolled into the study underwent the protocol (9 in group A, 11 in groups B and C, respectively), and their cardiac functions were evaluated afterwards. There were no serious adverse effects of cell therapy procedure observed in each group. The analysis at 3 months interval showed an improvement in metabolism in the cellular therapy arms detected by PET. Left ventricle ejection fraction improved from 38 to 44%, although this improvement in global heart function was not statistically significant. However, regional heart function at the infarction site (peak systolic velocity of the infarcted wall) improved from 4.1 to 5.0 cm/s in the arm A (p<0.01), while no improvement was observed in arms B and C. A very significant improvement in metabolism and regional function of infarcted area of left ventricle was observed in three patients, all within the treatment arm A. Conclusion: Mononuclear bone marrow cells as a potential source of adult stem cells can be enriched, cultured ex vivo, and safely used in the cellular therapy protocols for ischemic heart disease. The functional benefit of dose of 1•108 mononuclear cells can be detected in a group of patients after acute myocardial infarction.


2010 ◽  
Vol 55 (10) ◽  
pp. A110.E1024 ◽  
Author(s):  
Farshid Afsharzada ◽  
Robin Nijveldt ◽  
Alexander Hirsch ◽  
Pieter A van der Vleuten ◽  
Aernout M. Beek ◽  
...  

2009 ◽  
Vol 19 (6) ◽  
pp. 593-600 ◽  
Author(s):  
Mahmoud Abu-Abeeleh ◽  
Ismail Matalka ◽  
Zuhair A. Bani Ismail ◽  
Khaled R. Alzaben ◽  
Sami A. Abu-Halaweh ◽  
...  

2020 ◽  
Author(s):  
Hang Xiang ◽  
Tianyuan Xiang ◽  
Hongxia Zhang ◽  
Ann Xu ◽  
Matthew John Horwedel ◽  
...  

Abstract BackgroundHuman adipose derived mesenchymal stem cells (ASCs) are ideal candidates for the treatment of acute myocardial infarction (AMI), due to their favorable availability and regenerative potential. However, in vivo studies showed that ASCs are not resilient at the infarcted area, for a shortage of blood and oxygen supply. Material and methodsTo solve the problem of living in the hypoxic environment, we accommodated ASCs within the hypoxic condition. To enhance the capillary system, we combined the hypoxic pretreated ASCs (HP-ASCs) with cord blood mononuclear cells (CBMNCs), which have a great potential for neovascularization. We hypothesized that this combination system would improve the transplantation efficiency. ResultsIn vitro study showed that HP-ASCs had a wide range of paracrine function, with the incretion growth factors and their receptors, which would support the cell survivals. In addition, HP-ASCs also gained potentials in hypoxic adaptation (increased expression of HO-1 and SDF-1), as well as homing and immigrating abilities (CXCR4, ICAM-1 and ICAM-2). In vivo studies showed that, 30 days after transplantation in AMI rats, the HP-ASCs group had a better improvement in cardiac function; reduction of the infarct size; and decrease of ASCs death than the other groups (HP-ASCs > HP-ASCs + CBMNCs ≧ CBMNCs > PBS) (p<0.05). However, the combined group of HP-ASCs and CBMNCs had more significant angiogenesis than the other groups (HP-ASCs + CBMNCs > CBMNCs > HP-ASCs > PBS) (p <0.05).ConclusionsHP-ASCs alone had a greater potential in improving cardiac function in AMI rats. However, the combination of HP-ASCs and CBMNCs had a better result in angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document