scholarly journals Endothelium-dependent responses of cerebral blood vessels during chronic hypertension.

Hypertension ◽  
1991 ◽  
Vol 17 (5) ◽  
pp. 612-618 ◽  
Author(s):  
S T Yang ◽  
W G Mayhan ◽  
F M Faraci ◽  
D D Heistad
1990 ◽  
Vol 1 (1) ◽  
pp. 53-57
Author(s):  
F M Faraci ◽  
G L Baumbach ◽  
D D Heistad

New concepts have emerged in recent years concerning regulation of cerebral circulation. The purpose of this review is to summarize briefly several of these concepts. First, humoral mechanisms may have important effects on cerebral blood vessels and blood flow to choroid plexus. Recent evidence suggests that several vasoactive peptides may have major effects on fluid and ion balance in the brain by altering blood flow to the choroid plexus and possibly the production of cerebrospinal fluid. Second, chronic hypertension produces structural remodeling and hypertrophy of cerebral blood vessels and a shift in the relationship of cerebral blood flow to systemic blood pressure. Third, endothelium-dependent responses of cerebral arterioles to receptor and nonreceptor mediated agonists are impaired during chronic hypertension. Alterations in endothelium-dependent responses of cerebral arterioles during chronic hypertension appears to be due to release of an endothelium-derived contracting factor.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Davide Di Bella ◽  
João P. S. Ferreira ◽  
Renee de Nazare O. Silva ◽  
Cinthya Echem ◽  
Aline Milan ◽  
...  

Abstract Background Sepsis is an emergency medical condition that can lead to death and it is defined as a life-threatening organ dysfunction caused by immune dysregulation in response to an infection. It is considered the main killer in intensive care units. Sepsis associated-encephalopathy (SAE) is mostly caused by a sepsis-induced systemic inflammatory response. Studies report SAE in 14–63% of septic patients. Main SAE symptoms are not specific and usually include acute impairment of consciousness, delirium and/or coma, along with electroencephalogram (EEG) changes. For those who recover from sepsis and SAE, impaired cognitive function, mobility and quality of life are often observed months to years after hospital discharge, and there is no treatment available today to prevent that. Inflammation and oxidative stress are key players for the SAE pathophysiology. Gold nanoparticles have been demonstrated to own important anti-inflammatory properties. It was also reported 20 nm citrate-covered gold nanoparticles (cit-AuNP) reduce oxidative stress. In this context, we tested whether 20 nm cit-AuNP could alleviate the acute changes caused by sepsis in brain of mice, with focus on inflammation. Sepsis was induced in female C57BL/6 mice by cecal ligation and puncture (CLP), 20 nm cit-AuNP or saline were intravenously (IV) injected 2 h after induction of sepsis and experiments performed 6 h after induction. Intravital microscopy was used for leukocyte and platelet adhesion study in brain, blood brain barrier (BBB) permeability carried out by Evans blue assay, cytokines measured by ELISA and real time PCR, cell adhesion molecules (CAMs) by flow cytometry and immunohistochemistry, and transcription factors, by western blotting. Results 20 nm cit-AuNP treatment reduced leukocyte and platelet adhesion to cerebral blood vessels, prevented BBB failure, reduced TNF- concentration in brain, and ICAM-1 expression both in circulating polymorphonuclear (PMN) leukocytes and cerebral blood vessels of mice with sepsis. Furthermore, 20 nm cit-AuNP did not interfere with the antibiotic effect on the survival rate of mice with sepsis. Conclusions Cit-AuNP showed important anti-inflammatory properties in the brain of mice with sepsis, being a potential candidate to be used as adjuvant drug along with antibiotics in the treatment of sepsis to avoid SAE


1971 ◽  
Vol 6 (1) ◽  
pp. 34-47 ◽  
Author(s):  
Ajax Elis George ◽  
Pulla R.S. Kishore ◽  
Norman E. Chase

2003 ◽  
Vol 284 (1) ◽  
pp. E184-E192 ◽  
Author(s):  
Chris Stirone ◽  
Sue P. Duckles ◽  
Diana N. Krause

The cerebral vasculature is an important target tissue for estrogen, as evidenced by significant effects of estrogen on vascular reactivity and protein levels of endothelial nitric oxide synthase and prostacyclin synthase. However, the presence, localization, and regulation of estrogen receptors in the cerebral vasculature have not been investigated. In this study, we identified the presence of estrogen receptor-α (ER-α) in female rat cerebral blood vessels and localized this receptor to both smooth muscle and endothelial cells by use of immunohistochemistry and confocal microscopy. With immunoblot analysis, multiple forms of ER-α were detected at 110, 93, 82, 50, and 45 kDa in addition to a relatively weak band corresponding to the 66-kDa putative unmodified receptor. The 82-kDa band was identified as Ser118-phosphorylated ER-α, whereas the 50-kDa band lacks the normal NH2 terminus, suggestive of an ER-α splice variant. Lower molecular mass bands persisted after in vivo inhibition of 26S proteasome activity with lactacystin, whereas the 110- and 93-kDa bands increased. All forms of ER-α in cerebral vessels were decreased after ovariectomy but significantly increased after chronic estrogen exposure in vivo.


Sign in / Sign up

Export Citation Format

Share Document