Abstract 306: Similar Hemodynamic Efficacy Between 30 mm and 50 mm Compression Depth During Mechanical Chest Compression with Weil Mini Chest Compressor

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Zhengfei Yang ◽  
Ping Gong ◽  
Xiaobo Wu ◽  
Jie Qian ◽  
Shen Zhao ◽  
...  

Introduction: Current guidelines require a 50 mm compression depth for manual chest compression. During mechanical chest compression, however, because of the design of each device, whether this depth yields the most optimal hemodynamic efficacy remains to be tested. In this study, we investigated the effects of compression depth on hemodynamics efficacy during mechanical CPR with the Weil Mini Chest Compressor in a porcine model. Hypothesis: There is no significant difference in hemodynamic efficacy between compression depth of 30 mm and 50 mm during mechanical CPR with the Weil Mini Chest Compressor. Methods: Ten male domestic pigs weighing 34±2 kg were utilized. Ventricular fibrillation was electrically induced and untreated for 7 min. The animals were then randomized to receive compression depth of 30 mm or 50 mm. Coincident with the start of precordial compression, the animals were mechanically ventilated at a rate of 10 breaths per minute. Defibrillation was attempted by a single 150 J shock. If resuscitation was not successful, CPR was resumed for 2 mins prior to the next defibrillation until either successful resuscitation or for a total of 15 mins. Results: All animals were successfully resuscitated. There were no differences in coronary perfusion pressure (CPP), end-tidal carbon dioxide (ETCO2) and carotid blood flow (CBF) between the two groups (Table). A significantly less rib fracture was observed in the 30 mm group [0 (0-0) vs 1.2 (0-2), p<0.05]. Conclusion: Similar hemodynamic efficacy was observed between 30 and 50 mm compression depth during mechanical CPR with the Weil Mini Chest Compressor.

2021 ◽  
Author(s):  
Matthias Ott ◽  
Alexander Krohn ◽  
Laurence H. Bilfield ◽  
F. Dengler ◽  
C. Jaki ◽  
...  

AbstractObjectiveTo evaluate leg-heel chest compression without previous training as an alternative for medical professionals and its effects on distance to potential aerosol spread during chest compression.Methods20 medical professionals performed standard manual chest compression followed by leg-heel chest compression after a brief instruction on a manikin. We compared percentage of correct chest compression position, percentage of full chest recoil, percentage of correct compression depth, average compression depth, percentage of correct compression rate and average compression rate between both methods. In a second approach, potential aerosol spread during chest compression was visualized.ResultsThere was no significant difference between manual and leg-heel compression. The distance to potential aerosol spread could have been increased by leg-heel method.ConclusionUnder special circumstances like COVID-19-pandemic, leg-heel chest compression may be an effective alternative without previous training compared to manual chest compression while markedly increasing the distance to the patient.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Davide Olivari ◽  
Daria De Giorgio ◽  
Deborah Novelli ◽  
Aurora Magliocca ◽  
Laura Ruggeri ◽  
...  

Introduction: CPR aims to re-establish blood flow by chest compression (CC), achieving threshold levels of coronary perfusion pressure (CPP). For this, current guidelines recommend the lower sternal half as optimum CC point. However, this point might be not optimal for every individual. We investigated the hemodynamics generated by CC performed on different chest points in a rat model of CPR. We hypothesized that a CC point hemodynamically-identified would be a better approach compared to the lower sternal half. Methods: Ten male rats were anesthetized and arterial and right atrial pressures monitored. Ventricular fibrillation was induced and untreated for 8 min. CPR, including mechanical CC, ventilation, and epinephrine, was then performed for 8 min. Animals were divided to receive CC performed either on the lower sternal half (standard (STD), n=5) or on an optimum point identified as the one able to generate the maximum CPP (MaxCPP group, n=5). Cardiac districts involved in CC were subsequently identified by computed tomography (CT). Results: STD CC produced a CPP that was constantly below the threshold for successful resuscitation and trended to decrease over time. When the optimum CC point was identified hemodynamically, the CPP generated was constantly > 20 mmHg. Indeed, CPP was significantly higher in the MaxCPP group compared to the STD one for the whole 8 min of CPR (p<0.01, Fig). Moreover, administration of epi rapidly further improved CPP (p<0.01 vs. pre-epi) in the group with an optimized CC point, while no drug effect was observed in the STD one. CT scan showed that the lower sternal half did not correspond to the LV maximum diameter, known to account for a maximum stroke volume generation during CC (Fig). Conclusion: Standard lower sternal half CC point is not able to maximize hemodynamics during CPR, making ineffective CC efforts and vasopressor administration. The quality of CPR may improve if the optimum CC point is identified as a reflection of CPP generated.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Carlos Castillo ◽  
Joe Bisera ◽  
Giuseppe Ristagno ◽  
Wanchun Tang ◽  
Max Harry Weil

A miniaturized chest compressor (MCC®) for cardiopulmonary resuscitation (CPR) was designed to serve as a compact portable device to overcome limitations of manual chest compression and of currently marketed mechanical devices. We sought to especially address constraints of size and weight of current devices, together with the need for ease of application and consistent compressions with appropriate force and depth. We further intended that the device allows for ease of evacuation and transport through small spaces. These objectives are responsive to the increasingly recognized requirements for uninterrupted chest compression including that which results from operator fatigue during manual compressions. Utilizing a garment applied to the torso, the device incorporated a telescopic piston for chest compression. The compressor was pneumatically powered so as to avoid the added weight and potential electrical adversity of power delivered by batteries. Pneumatic power was supplied by the same compressed air or oxygen tank, which is routinely carried by professional emergency medical rescuers. The MCC® was tested on a porcine model during cardiac arrest and resuscitation with comparisons to the current industry standard, the Michigan Thumper®. Arterial, carotid, and coronary perfusion pressures, together with end-tidal carbon dioxide as a surrogate for cardiac output, were measured. The MCC® threshold levels of pressure, flow, and end-tidal PCO2 are achieved, which were predictive of successful defibrillation with restoration of spontaneous circulation. We conclude that the MCC® is as effective as that of the established industry standard, the Michigan Thumper®, with the potential advantage of portability and facile application, especially for out-of-hospital resuscitation.


2020 ◽  
Author(s):  
İshak Şan ◽  
Burak Bekgöz ◽  
Mehmet Ergin ◽  
Eren Usul

Abstract Objectives We aimed to evaluate and compare the qualities of chest compressions performed manually by healthcare professionals and by a mechanical chest compression device on a training model during an ambulance transfer. DesignThis is an experimental trial. Setting This study was performed by the EMS of Ankara City (Capital of Turkey). 20 (10 male and 10 female) paramedic participated the study. We used LUCAS 2 as mechanical chest compression device in the study. A total of 40 rounds were driven on the track; in that moving ambulance, the model was applied chest compression in 20 rounds by paramedics, while in 20 rounds were applied by mechanical chest compression device. The depth, rate and hands-off time of chest compression were measured by means of the model's recording system. Results The median chest compression rate was 120.1 compressions per minute (IQR 25–75%=117.9–133.5) for the paramedics, whereas it was 102.3 compressions per minute for the mechanical chest compression device (IQR 25–75%=102.1–102.7) (p<0.001). The median chest compression depth was 38.9 millimeters (IQR 25–75%=32.9–45.5) for the paramedics, whereas it was 52.7 millimeters for the mechanical chest compression device (IQR 25–75%=51.8–55.0) (p<0.001). The median hands-off time during cardiopulmonary resuscitation was 6.9% (IQR 25–75=5.0–10.1%) for the paramedics and 9% (IQR 25–75%=8.2–12.5%) (p=0.09). Conclusion Chest compressions performed by the mechanical chest compression device were found to be within the range recommended by the guidelines in terms of both speed and duration.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_4) ◽  
Author(s):  
Shannon E Allen ◽  
Allison Hubert ◽  
Dorcas Nsumbu ◽  
Samantha Ang ◽  
John M Canty ◽  
...  

Introduction: Mechanical devices offer the ability to provide consistent fixed-depth chest compressions during CPR. Although compression depth is considered a primary determinant of CPR quality, the influence of other device settings has received less attention. Accordingly, we evaluated the combined effect of compression depth and device start position on CPR hemodynamics in a porcine model of cardiac arrest (CA). Methods: Swine (n=119) were subjected to 7-10 min of CA following electrical induction of ventricular fibrillation. CPR was subsequently performed manually (target peak aortic pressure: 100 mmHg; n=73) or with a mechanical compression system (LUCAS 3.1, Stryker; n=46). Within the mechanical CPR group, animals received 102 compressions/min using either factory default settings (“QuickFit” automated suction cup start position; compression depth: 2.1”; n=13) or custom settings (manual suction cup start position; compression depth: 1.8”; n=33). Aortic pressure (Ao), coronary perfusion pressure (CPP), and regional cerebral oxygen saturation (rSO 2 ; via near infrared spectroscopy) were compared between groups after 1 min of CPR. Results: Mechanical CPR with automated suction cup start position and compression depth of 2.1” resulted in significantly higher peak Ao and CPP than mechanical CPR with manual start position and compression depth of 1.8” ( Table ). Compared with manual CPR, only mechanical CPR with automated start position and compression depth of 2.1” led to a higher CPP. However, cerebral rSO 2 values fell from 61±1 % at baseline to 49±1 % during CA (p<0.01) and did not increase during CPR in any group. Conclusion: Compared with a manual start position and compression depth of 1.8”, use of the LUCAS “QuickFit” feature and compression depth of 2.1” led to a significantly higher CPP during mechanical CPR. Future studies are necessary to determine if differences persist during prolonged CPR with and without concomitant vasopressor administration.


1988 ◽  
Vol 65 (6) ◽  
pp. 2641-2647 ◽  
Author(s):  
I. von Planta ◽  
M. H. Weil ◽  
M. von Planta ◽  
J. Bisera ◽  
S. Bruno ◽  
...  

A standardized method of cardiopulmonary resuscitation in rodents has been developed for anesthetized, mechanically ventilated rats. Ventricular fibrillation was induced and maintained by an alternating current delivered to the right ventricular endocardium. After 4 min of ventricular fibrillation, the chest was compressed with a pneumatic piston device. Eight of 14 animals were successfully resuscitated with DC countershock after 6 min of cardiac arrest. In confirmation of earlier studies from our laboratories in dogs, pigs, and human patients, this rodent model of cardiopulmonary resuscitation demonstrated large venoarterial [H+] and PCO2 gradients associated with reduced pulmonary excretion of CO2 during the low-flow state. Mean aortic pressure, coronary perfusion pressure, and end-tidal CO2 during chest compression were predictive of successful resuscitation.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Norman A Paradis ◽  
Karen L Moodie ◽  
Christopher L Kaufman ◽  
Joshua W Lampe

Introduction: Guidelines for treatment of cardiac arrest recommend minimizing interruptions in chest compressions based on research indicating that interruptions compromise coronary perfusion pressure (CPP) and blood flow and reducing the likelihood of successful defibrillation. We investigated the dynamics of CPP before, during, and after compression interruptions and how they change over time. Methods: CPR was performed on domestic swine (~30 Kg) using standard physiological monitoring. Blood flow was measured in the abdominal aorta (AAo), the inferior vena cava, the right common carotid and external jugular. Ventricular fibrillation (VF) was electrically induced. Mechanical chest compressions (CC) were started after four minutes of VF. CC were delivered at a rate of 100 compressions per minute (cpm) and at a depth of 2” for a total of 12 min. CPP was calculated as the difference between aortic and right atrial pressure at end-diastole per Utstein guidelines. CPP was determined for 5 compressions prior to the interruption, every 2 seconds during the CC interruption, and for 7 compressions after the interruption. Per protocol, 12 interruptions occurred at randomized time points. Results: Across 12 minutes of CPR, averaged CPP prior to interruption was significantly greater than the averaged CPP after the interruption (22.4±1.0 vs. 15.5±0.73 mmHg). As CPR continued throughout the 12 minutes, CPP during compressions decreased (First 6 min = 24.1±1.4 vs. Last 6 min = 20.1±1.3 mmHg, p=0.05), but the effect of interruptions remained constant resulting in a 20% drop in CPP for every 2 seconds irrespective of the prior CPP. The increase (slope) of CPP after resumption of compressions was significantly reduced over time (First 6 min = 1.47±0.18 vs. Last 6 min = 0.82±0.13 mmHg/compression). Conclusions: Chest compression interruptions have a detrimental effect on coronary perfusion and blood flow. The magnitude of this effect increases over time as a resuscitation effort continues. These data confirm the importance of providing uninterrupted CPR particularly in long duration resuscitations.


2021 ◽  
Vol 22 (4) ◽  
pp. 810-819
Author(s):  
Mack Sheraton ◽  
John Columbus ◽  
Salim Surani ◽  
Ravinder Chopra ◽  
Rahul Kashyap

Introduction: Our goal was to systematically review contemporary literature comparing the relative effectiveness of two mechanical compression devices (LUCAS and AutoPulse) to manual compression for achieving return of spontaneous circulation (ROSC) in patients undergoing cardiopulmonary resuscitation (CPR) after an out-of-hospital cardiac arrest (OHCA). Methods: We searched medical databases systematically for randomized controlled trials (RCT) and observational studies published between January 1, 2000–October 1, 2020 that compared mechanical chest compression (using any device) with manual chest compression following OHCA. We only included studies in the English language that reported ROSC outcomes in adult patients in non-trauma settings to conduct random-effects metanalysis and trial sequence analysis (TSA). Multivariate meta-regression was performed using preselected covariates to account for heterogeneity. We assessed for risk of biases in randomization, allocation sequence concealment, blinding, incomplete outcome data, and selective outcome reporting. Results: A total of 15 studies (n = 18474), including six RCTs, two cluster RCTs, five retrospective case-control, and two phased prospective cohort studies, were pooled for analysis. The pooled estimates’ summary effect did not indicate a significant difference (Mantel-Haenszel odds ratio = 1.16, 95% confidence interval, 0.97 to 1.39, P = 0.11, I2 = 0.83) between mechanical and manual compressions during CPR for ROSC. The TSA showed firm evidence supporting the lack of improvement in ROSC using mechanical compression devices. The Z-curves successfully crossed the TSA futility boundary for ROSC, indicating sufficient evidence to draw firm conclusions regarding these outcomes. Multivariate meta-regression demonstrated that 100% of the between-study variation could be explained by differences in average age, the proportion of females, cardiac arrests with shockable rhythms, witnessed cardiac arrest, bystander CPR, and the average time for emergency medical services (EMS) arrival in the study samples, with the latter three attaining statistical significance. Conclusion: Mechanical compression devices for resuscitation in cardiac arrests are not associated with improved rates of ROSC. Their use may be more beneficial in non-ideal situations such as lack of bystander CPR, unwitnessed arrest, and delayed EMS response times. Studies done to date have enough power to render further studies on this comparison futile.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Felipe Teran ◽  
Claire Centeno ◽  
Alex L Lindqwister ◽  
William J Hunckler ◽  
William Landis ◽  
...  

Background: Lifeless shock (LS) (previously called EMD and pseudo-PEA) is a global hypotensive ischemic state with retained coordinated myocardial contractile activity and an organized ECG. We have previously described our hypoxic LS model. The role of standard external chest compressions remains unclear in the setting of LS and its associated intrinsic hemodynamics. Although it is known the patients with LS have better prognosis compared to PEA, it is unclear what is the best treatment strategy. Prior work has shown that chest compressions (CC) when synchronized with native systole results in significant hemodynamic improvement, most notably coronary perfusion pressure (CPP), and hence it is plausible that standard dyssynchronous CC may be detrimental to hemodynamics. Furthermore, retrospective clinical data has shown that LS patients treated with vasopressors and no CC, may have better outcomes. We compared epinephrine only versus epinephrine and chest compression, in a porcine model of LS. Methods: Our porcine model of hypoxic LS has previously been described. We randomized pigs to episodes of LS treated with epinephrine only (control) (0.0015 mg/kg) versus epinephrine plus standard external chest compressions (intervention). Animals were endotracheally intubated and mechanically ventilated, and the fraction of inspired oxygen (FiO 2 ) was gradually lowered from room air (20-30% O 2 ) to a target FiO 2 of 3-7% O 2 . This target FiO 2 was maintained until the systolic blood pressure (SBP) dropped to 30 mmHg for 30 seconds, or the animal became bradycardic (HR less than 40), which was defined as the start of LS. FiO 2 was then raised to 100%, and then animal would receive control or intervention. Return of spontaneous circulation (ROSC) was defined as SBP 60 mmHg, stable after 2 minutes. Results: Twenty-six episodes of LS in 11 animals received epinephrine only control and 21 episodes the epinephrine plus chest compression intervention. The rates of ROSC in two minutes or less were 5/26 (19%) in the control arm vs 14/21 (67%) in the intervention arm (P=0.001;95% CI 19.7 %-67.2%). Conclusions: In a swine model of hypoxia induced LS, epinephrine plus CPR may be superior to epinephrine alone.


Sign in / Sign up

Export Citation Format

Share Document