Abstract 16191: Phospholamban Regulates Perinuclear/nuclear Calcium Dynamics in Cardiomyocytes

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Adonis Z Wu ◽  
Yi-Hsin Chan ◽  
Shien-Fong Lin ◽  
Peng-Sheng Chen ◽  
Zhenhui Chen

Introduction: Phospholamban (PLB) regulates cardiac sarcoplasmic reticulum (SR) Ca 2+ -ATPase (SERCA2a), thus modulating SR Ca 2+ dynamics. Recent studies demonstrated that SERCA is involved in Ca 2+ uptake into the lumen of nuclear envelope (NE) of cardiomyocytes (CMs). However, the regulatory role of PLB on Ca 2+ uptake into NE remains unknown. Hypothesis: We hypothesize that PLB is also responsible for modulating nuclear Ca 2+ dynamics. Methods: Confocal immunofluorescence microscopy was used to determine subcellular expression of PLB. By using fluo-4 based confocal line-scan Ca 2+ imaging, we measured spontaneous Ca 2+ waves (SCWs) across both cytoplasmic and nuclear regions in isolated permeabilized mouse CMs. Results: Several anti-PLB antibodies strongly stained PLB at both SR and the perinuclear membranes in CMs. A PLB peptide (residues 1-31) eliminated all these anti-PLB antibody stains. To identify the functional role of PLB expressed in the perinuclear membranes, we took advantage of our recently established method that a Fab fragment of anti-PLB monoclonal antibody (Fab) reversed PLB inhibition specifically and increased SR Ca 2+ uptake and release. SCWs through the nuclear regions had typically relative low fluorescent amplitude (F/F 0 ) and slow decay time (t 1/2 ) compared to that in the cytoplasmic region. At the free intracellular Ca 2+ concentration ([Ca 2+ ] i ) of 400 nM, Fab (100 μg/mL) significantly enhanced F/F 0 and decreased t 1/2 of SCWs in both cytoplasmic and nuclear regions. After addition of Fab, F/F 0 of SCWs through the nuclear regions increased from 0.91±0.16 to 1.27±0.19 (n=9, p<.05) while t 1/2 decreased from 137.6±18.5 ms to 105.0±11.3 ms, (p<.05). Similar effects were also observed after phosphorylation of PLB by addition of 20 μM cAMP (F/F 0 =1.43±0.11 vs. 1.04±0.14 in control, p<.05; t 1/2 =107.82±10.9 ms vs. 139.21±20.1 ms in control, n=6, p<.05). At high [Ca 2+ ] i of 1000 nM where PLB does not inhibit SERCA2a, addition of cAMP or Fab had no significant effect on SCWs in both cytoplasmic and nuclear regions. Conclusions: We demonstrated that PLB is expressed in and around NE. Acute removal of PLB inhibition increased perinuclear/nuclear Ca 2+ uptake and release. PLB is critically involved in nuclear Ca 2+ signaling modulation.

2003 ◽  
Vol 77 (9) ◽  
pp. 5360-5369 ◽  
Author(s):  
Luc Snyers ◽  
Hannes Zwickl ◽  
Dieter Blaas

ABSTRACT Using several approaches, we investigated the importance of clathrin-mediated endocytosis in the uptake of human rhinovirus serotype 2 (HRV2). By means of confocal immunofluorescence microscopy, we show that K+ depletion strongly reduces HRV2 internalization. Viral uptake was also substantially reduced by extraction of cholesterol from the plasma membrane with methyl-β-cyclodextrin, which can inhibit clathrin-mediated endocytosis. In accordance with these data, overexpression of dynamin K44A in HeLa cells prevented HRV2 internalization, as judged by confocal immunofluorescence microscopy, and strongly reduced infection. We also demonstrate that HRV2 bound to the surface of HeLa cells is localized in coated pits but not in caveolae. Finally, transient overexpression of the specific dominant-negative inhibitors of clathrin-mediated endocytosis, the SH3 domain of amphiphysin and the C-terminal domain of AP180, potently inhibited internalization of HRV2. Taken together, these results indicate that HRV2 uses clathrin-mediated endocytosis to infect cells.


2008 ◽  
Vol 86 (6) ◽  
pp. 509-519 ◽  
Author(s):  
Magdalena Sobczak ◽  
Anna Wasik ◽  
Wanda Kłopocka ◽  
Maria Jolanta Rędowicz

Recently, we found a 130-kDa myosin VI immunoanalog in amoeba, which bound to actin in an ATP-sensitive manner and in migrating amoebae colocalized to filamentous actin and dynamin II-containing vesicular structures. To further characterize this protein, we assessed its involvement in amoeba pinocytosis and phagocytosis. Confocal immunofluorescence microscopy and electron microscopy of immunogold-stained cells revealed that, in pinocytotic and phagocytotic amoebae, the myosin VI immunoanalog was visible throughout the cells, including pinocytotic channels and pinocytotic vesicles as well as phagosomes and emerging phagocytic cups. Blocking endogenous protein with anti-porcine myosin VI antibody (introduced into cells by means of microinjection) caused severe defects in pinocytosis and phagocytosis. In comparison with control cells, the treated amoebae formed ~75% less pinocytotic channels and phagocytosed ~65% less Tetrahymena cells. These data indicate that the myosin VI immunoanalog has an important role in pinocytosis and phagocytosis in Amoeba proteus (Pal.).


2003 ◽  
Vol 285 (1) ◽  
pp. E138-E154 ◽  
Author(s):  
Leonid E. Fridlyand ◽  
Natalia Tamarina ◽  
Louis H. Philipson

We have developed a detailed mathematical model of ionic flux in β-cells that includes the most essential channels and pumps in the plasma membrane. This model is coupled to equations describing Ca2+, inositol 1,4,5-trisphosphate (IP3), ATP, and Na+ homeostasis, including the uptake and release of Ca2+ by the endoplasmic reticulum (ER). In our model, metabolically derived ATP activates inward Ca2+ flux by regulation of ATP-sensitive K+ channels and depolarization of the plasma membrane. Results from the simulations support the hypothesis that intracellular Na+ and Ca2+ in the ER can be the main variables driving both fast (2–7 osc/min) and slow intracellular Ca2+ concentration oscillations (0.3–0.9 osc/min) and that the effect of IP3 on Ca2+ leak from the ER contributes to the pattern of slow calcium oscillations. Simulations also show that filling the ER Ca2+ stores leads to faster electrical bursting and Ca2+ oscillations. Specific Ca2+ oscillations in isolated β-cell lines can also be simulated.


1996 ◽  
Vol 135 (4) ◽  
pp. 913-924 ◽  
Author(s):  
O Ullrich ◽  
S Reinsch ◽  
S Urbé ◽  
M Zerial ◽  
R G Parton

Small GTPases of the rab family are crucial elements of the machinery that controls membrane traffic. In the present study, we examined the distribution and function of rab11. Rab11 was shown by confocal immunofluorescence microscopy and EM to colocalize with internalized transferrin in the pericentriolar recycling compartment of CHO and BHK cells. Expression of rab11 mutants that are preferentially in the GTP- or GDP-bound state caused opposite effects on the distribution of transferrin-containing elements; rab11-GTP expression caused accumulation of labeled elements in the perinuclear area of the cell, whereas rab11-GDP caused a dispersion of the transferrin labeling. Functional studies showed that the early steps of uptake and recycling for transferrin were not affected by overexpression of rab11 proteins. However, recycling from the later recycling endosome was inhibited in cells overexpressing the rab11-GDP mutant. Rab5, which regulates early endocytic trafficking, acted before rab11 in the transferrin-recycling pathway as expression of rab5-GTP prevented transport to the rab11-positive recycling endosome. These results suggest a novel role for rab11 in controlling traffic through the recycling endosome.


Sign in / Sign up

Export Citation Format

Share Document