scholarly journals Neutrophil-Derived S100A8/A9 Amplify Granulopoiesis After Myocardial Infarction

Circulation ◽  
2020 ◽  
Vol 141 (13) ◽  
pp. 1080-1094 ◽  
Author(s):  
Gopalkrishna Sreejit ◽  
Ahmed Abdel-Latif ◽  
Baskaran Athmanathan ◽  
Rahul Annabathula ◽  
Ashish Dhyani ◽  
...  

Background: Myocardial infarction (MI) triggers myelopoiesis, resulting in heightened production of neutrophils. However, the mechanisms that sustain their production and recruitment to the injured heart are unclear. Methods: Using a mouse model of the permanent ligation of the left anterior descending artery and flow cytometry, we first characterized the temporal and spatial effects of MI on different myeloid cell types. We next performed global transcriptome analysis of different cardiac cell types within the infarct to identify the drivers of the acute inflammatory response and the underlying signaling pathways. Using a combination of genetic and pharmacological strategies, we identified the sequelae of events that led to MI-induced myelopoiesis. Cardiac function was assessed by echocardiography. The association of early indexes of neutrophilia with major adverse cardiovascular events was studied in a cohort of patients with acute MI. Results: Induction of MI results in rapid recruitment of neutrophils to the infarct, where they release specific alarmins, S100A8 and S100A9. These alarmins bind to the Toll-like receptor 4 and prime the nod-like receptor family pyrin domain-containing 3 inflammasome in naïve neutrophils and promote interleukin-1β secretion. The released interleukin-1β interacts with its receptor (interleukin 1 receptor type 1) on hematopoietic stem and progenitor cells in the bone marrow and stimulates granulopoiesis in a cell-autonomous manner. Genetic or pharmacological strategies aimed at disruption of S100A8/A9 and their downstream signaling cascade suppress MI-induced granulopoiesis and improve cardiac function. Furthermore, in patients with acute coronary syndrome, higher neutrophil count on admission and after revascularization correlates positively with major adverse cardiovascular disease outcomes. Conclusions: Our study provides novel evidence for the primary role of neutrophil-derived alarmins (S100A8/A9) in dictating the nature of the ensuing inflammatory response after myocardial injury. Therapeutic strategies aimed at disruption of S100A8/A9 signaling or their downstream mediators (eg, nod-like receptor family pyrin domain-containing 3 inflammasome, interleukin-1β) in neutrophils suppress granulopoiesis and may improve cardiac function in patients with acute coronary syndrome.

2020 ◽  
Vol 9 (11) ◽  
pp. 3746 ◽  
Author(s):  
Oliwia Grzegorowska ◽  
Jacek Lorkowski

An outbreak of SARS-CoV-2 infection in December 2019 became a major global concern in 2020. Since then, several articles analyzing the course, complications and mechanisms of the infection have appeared. However, there are very few papers explaining the possible correlations between COVID-19, atherosclerosis and acute coronary syndromes. We performed an analysis of PubMed, Cochrane, Google Scholar, and MEDLINE databases. As of September 15, 2020, the results were as follows: for “COVID-19” and “cardiovascular system” we obtained 687 results; for “COVID-19” and “myocardial infarction” together with “COVID-19” and “acute coronary syndrome” we obtained 328 results; for “COVID-19” and “atherosclerosis” we obtained 57 results. Some of them did not fulfill the search criteria or concerned the field of neurology. Only articles written in English, German and Polish were analyzed for a total number of 432 papers. While the link between inflammatory response, COVID- 19 and atherosclerosis still remains unclear, there is evidence that suggests a more likely correlation between them. Practitioners’ efforts should be focused on the prevention of excessive inflammatory response and possible complications, while there are limited specific therapeutic options against SARS-CoV-2. Furthermore, special attention should be paid to cardioprotection during the pandemic.


Sign in / Sign up

Export Citation Format

Share Document