scholarly journals Effects of Nitric Oxide Synthase Inhibition on Basal Function and the Force-Frequency Relationship in the Normal and Failing Human Heart In Vivo

Circulation ◽  
2001 ◽  
Vol 104 (19) ◽  
pp. 2318-2323 ◽  
Author(s):  
James M. Cotton ◽  
Mark T. Kearney ◽  
Philip A. MacCarthy ◽  
Richard M. Grocott-Mason ◽  
Dougal R. McClean ◽  
...  
Circulation ◽  
1997 ◽  
Vol 96 (9) ◽  
pp. 3104-3111 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Hiroaki Shimokawa ◽  
Toshiyuki Kozai ◽  
Toshiaki Kadokami ◽  
Kouichi Kuwata ◽  
...  

2001 ◽  
Vol 132 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Angeles Alvarez ◽  
Laura Piqueras ◽  
Regina Bello ◽  
Amparo Canet ◽  
Lucrecia Moreno ◽  
...  

2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


ChemInform ◽  
2010 ◽  
Vol 32 (32) ◽  
pp. no-no
Author(s):  
Haydn Beaton ◽  
Nigel Boughton-Smith ◽  
Peter Hamley ◽  
Anant Ghelani ◽  
David J. Nicholls ◽  
...  

1995 ◽  
Vol 181 (1) ◽  
pp. 63-70 ◽  
Author(s):  
N K Worrall ◽  
W D Lazenby ◽  
T P Misko ◽  
T S Lin ◽  
C P Rodi ◽  
...  

The role of nitric oxide in the immune response to allogeneic tissue was explored in an in vivo cardiac transplant model in the rat. Nitric oxide production during organ rejection was demonstrated by elevations in systemic serum nitrite/nitrate levels and by electron paramagnetic resonance spectroscopy. Messenger RNA for the inducible nitric oxide synthase enzyme was detected in the rejecting allografted heart, but not in the nonrejecting isografted heart. The enzyme was demonstrated to be biologically active by the in vitro conversion of L-arginine to L-citrulline and was immunohistochemically localized to the infiltrating inflammatory cells. Treatment with aminoguanidine, a preferential inhibitor of the inducible nitric oxide synthase isoform, prevented the increased nitric oxide production in the transplanted organ and significantly attenuated the pathogenesis of acute rejection. Aminoguanidine treatment prolonged graft survival, improved graft contractile function, and significantly reduced the histologic grade of rejection. These results suggest an important role for nitric oxide in mediating the immune response to allogeneic tissue. Inhibition of inducible nitric oxide synthase may provide a novel therapeutic modality in the management of acute transplant rejection and of other immune-mediated processes.


2018 ◽  
Vol 87 (2) ◽  
Author(s):  
Kimberly L. James ◽  
Austin B. Mogen ◽  
Jessica N. Brandwein ◽  
Silvia S. Orsini ◽  
Miranda J. Ridder ◽  
...  

ABSTRACTStaphylococcus aureusnitric oxide synthase (saNOS) is a major contributor to virulence, stress resistance, and physiology, yet the specific mechanism(s) by which saNOS intersects with other known regulatory circuits is largely unknown. The SrrAB two-component system, which modulates gene expression in response to the reduced state of respiratory menaquinones, is a positive regulator ofnosexpression. Several SrrAB-regulated genes were also previously shown to be induced in an aerobically respiringnosmutant, suggesting a potential interplay between saNOS and SrrAB. Therefore, a combination of genetic, molecular, and physiological approaches was employed to characterize anos srrABmutant, which had significant reductions in the maximum specific growth rate and oxygen consumption when cultured under conditions promoting aerobic respiration. Thenos srrABmutant secreted elevated lactate levels, correlating with the increased transcription of lactate dehydrogenases. Expression of nitrate and nitrite reductase genes was also significantly enhanced in thenos srrABdouble mutant, and its aerobic growth defect could be partially rescued with supplementation with nitrate, nitrite, or ammonia. Furthermore, elevated ornithine and citrulline levels and highly upregulated expression of arginine deiminase genes were observed in the double mutant. These data suggest that a dual deficiency in saNOS and SrrAB limitsS. aureusto fermentative metabolism, with a reliance on nitrate assimilation and the urea cycle to help fuel energy production. Thenos,srrAB, andnos srrABmutants showed comparable defects in endothelial intracellular survival, whereas thesrrABandnos srrABmutants were highly attenuated during murine sepsis, suggesting that SrrAB-mediated metabolic versatility is dominantin vivo.


Sign in / Sign up

Export Citation Format

Share Document