Enhanced Sp1/YY1 Expression Directs CBS Transcription to Mediate VEGF-Stimulated Pregnancy-Dependent H 2 S Production in Human Uterine Artery Endothelial Cells

Author(s):  
Jin Bai ◽  
Dong-bao Chen

Pregnancy and VEGF (vascular endothelial growth factor) stimulate uterine artery endothelial cell (UAEC) hydrogen sulfide production via selectively upregulating CBS (cystathionine β-synthase) but not CSE (cystathionine γ-lyase) expression. This study was conducted to determine the mechanisms by which VEGF utilizes to stimulate pregnancy-dependent upregulation of CBS and hydrogen sulfide production in human UAEC. The proximal human CBS promoter contains 4 Sp1 (specificity protein 1; a/b/c/d) sites and 1 YY1 (Yin Yang 1) site; luciferase assays using reporter genes driven by human CBS promoter with a series of 5′-deletions identified a promoter sequence (−574 to −394) containing Sp1d and the YY1 sites critical for basal and VEGF-stimulated CBS promoter activation. VEGF stimulated pregnancy-dependent recruitment of Sp1 to Sp1d and YY1 to YY1 and also recruited YY1 to Sp1c and increased Sp1/YY1 association in pregnant human UAEC, suggesting formation of a Sp1/YY1 complex at the Sp1c site. Endothelial Sp1 and YY1 proteins were significantly greater in pregnant than nonpregnant human uterine artery. VEGF stimulated pregnancy-dependent Sp1 and YY1 protein expression in vitro. Treatment with Sp1 and YY1 siRNAs completely blocked Sp1/YY1-mediated pregnancy-dependent CBS protein upregulation and hydrogen sulfide production by VEGF in human UAEC. VEGF did not trans -activate CSE promoter or increase CSE expression, and Sp1/YY1 knockdown did not affect CSE expression in human UAEC. Thus, pregnancy augments EC Sp1 and YY1 expression and promotes the recruitment of Sp1/YY1 to their DNA-binding sequences in proximal human CBS promoter to upregulate CBS transcription, underlying a novel mechanism to mediate VEGF-stimulated pregnancy-dependent endothelial hydrogen sulfide production in the human uterine artery.

2015 ◽  
Vol 7 (1) ◽  
pp. 28166 ◽  
Author(s):  
Amina Basic ◽  
Susanne Blomqvist ◽  
Anette Carlén ◽  
Gunnar Dahlén

2020 ◽  
Author(s):  
Ning Ma ◽  
Yufan Sun ◽  
Wen Zhang ◽  
Chaomin Sun

ABSTRACTCysteine desulfuration is one of the main ways for hydrogen sulfide (H2S) generation in cells and is usually conducted by cystathionine γ-lyase. Herein, we describe a newly discovered deep-sea bacterial threonine dehydratase (psTD), which is surprisingly discovered to drive L-cysteine desulfuration. The mechanisms of psTD catalyzing cysteine desulfuration towards H2S production are first clarified in vitro and in vivo through a combination of genetic and biochemical methods. Furthermore, based on the solved structures of psTD and its various mutants, two or three pockets are found in the active site of psTD, and switch states between inward and outward orientation of a key amino acid R77 determine the open or close status of Pocket III for small molecule exchanges, which further facilitates cysteine desulfuration. Our results reveal the functional diversity and structural specificity of psTD towards L-cysteine desulfuration and H2S formation. Given the broad distribution of psTD homologs in different bacteria, we speculate that some threonine dehydratases have evolved a novel function towards cysteine desulfuration, which benefits the producer to utilize cysteine as a sulfur source for better adapting external environments.


Sign in / Sign up

Export Citation Format

Share Document