Abstract 265: Identification of MicroRNA in an Ovine Model of Heart Failure

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Lee Lee Wong ◽  
Eng Leng Saw ◽  
Kar Sheng Lew ◽  
Miriam T Rademaker ◽  
Leigh J Ellmers ◽  
...  

Introduction: The sheep ( Ovis aries ) provides a large animal model in cardiovascular research including heart failure (HF). However, microRNA (miR) related work in the sheep model has been limited due to a paucity of information regarding oar-miR. The aim of this study was to identify novel oar-miRs in myocardium and examine their regulation in HF and HF recovery. Methods: Heart tissue was harvested from sheep undergoing 1. HF induced by rapid left ventricular (LV) pacing at 225bpm for 14 days, 2. HF recovery (HF-R) after discontinuation of pacing for an additional 14 days and 3. Sham. LV miRs were examined using next generation deep sequencing (NGS), miR array and stem-loop qPCR. Sequences were aligned with miRBase v20.0 and mapped to ovine genome and miRBase Mature BLAST search engine. Plasma was collected to assess natriuretic peptides (ANP and BNP). Results: Three miR libraries were generated from NGS and a total of 619 miRs were detected. Of these, 93 were oar-miRs; 49 novel miRs (high confidence) mapped to ovine genome and perfectly aligned to mature miRs in other organisms (miRBase v20.0); 69 putative novel miRs (high confidence) that mapped to ovine genome and aligned partially to mature miRs of other species in miRBase v20.0; 168 miRs (low confidence) that mapped to ovine genome but unaligned to any known mature miRs; and 240 miRs (low confidence) that were unmapped to the sheep genome but aligned to either miRBase mature hsa-/mmu-/rno-miRs. Plasma BNP and ANP increased 19-folds and 18- folds respectively in HF, and returned to baseline in HF-R. MiR levels in HF model were examined using miR array. About 1000 miRs were detected from array and at least 301 of them were overlapped with NGS data. Using miR array profiling followed by stem-loop qPCR validation, we found that myocardial enriched miR-133b-3p, miR-208b-3p, miR-21-5p and miR-125a-5p, -125b-5p, -126-3p, -210-3p, and 29a-3p were significantly upregulated in HF (p<0.05 vs. Sham). All trended downwards towards baseline levels during recovery (HF-R) but only miR-210 was significant (p<0.001 vs. HF). Conclusion: We identified 118 novel oar-miRs with high confidence and 408 potential oar-miRs, which is a solid foundation for miR function studies using sheep models. We also identified miR changes in HF and HF-R.

2000 ◽  
Vol 23 (5) ◽  
pp. 325-330 ◽  
Author(s):  
D. Mihaylov ◽  
H. Reintke ◽  
P. Blanksma ◽  
E.D. De Jong ◽  
J. Elstrodt ◽  
...  

The goal of the present study was to develop a large animal model of acute ischemic left ventricular heart failure (LVHF) that can be used to assess the influence of the PUCA pump on the heart and circulatory system under realistic conditions. We tested the hypothesis that mild stenosis of the coronary artery in combination with mild ventricular pacing induces an acute heart failure condition, whereas the separate phenomena themselves do not lead to impaired heart function. Mean aortic pressure (AoP), left ventricular end-diastolic pressure (LVEDP), stroke volume (SV) and myocardial systolic shortening (MSS) were compared 30 minutes after a pacemaker (PM) induced tachycardia in anaesthetized sheep (n=3) without and with ± 50% stenosis of the proximal LCx. All parameters measured restored to basic levels when stenosis was absent. When the LCx was partially occluded, mild PM-induced tachycardia resulted in decreased AoP (P=0.045) as well as in decreased SV (P=0.048); the LVEDP remained high (P=0.002). Also the recovery of MSS was impaired when stenosis was present (P=0.002). These values indicate that acute heart failure conditions were present. The technique used proved to be safe and allowd fine-tuning of the demand ischemia by adapting heart frequency to the required heart failure conditions. The model can be used to study the effect of LV mechanical support during acute heart failure conditions.


2015 ◽  
Vol 309 (9) ◽  
pp. H1407-H1418 ◽  
Author(s):  
Michael Schwarzl ◽  
Nazha Hamdani ◽  
Sebastian Seiler ◽  
Alessio Alogna ◽  
Martin Manninger ◽  
...  

Heart failure with preserved ejection fraction (HFPEF) evolves with the accumulation of risk factors. Relevant animal models to identify potential therapeutic targets and to test novel therapies for HFPEF are missing. We induced hypertension and hyperlipidemia in landrace pigs ( n = 8) by deoxycorticosteroneacetate (DOCA, 100 mg/kg, 90-day-release subcutaneous depot) and a Western diet (WD) containing high amounts of salt, fat, cholesterol, and sugar for 12 wk. Compared with weight-matched controls ( n = 8), DOCA/WD-treated pigs showed left ventricular (LV) concentric hypertrophy and left atrial dilatation in the absence of significant changes in LV ejection fraction or symptoms of heart failure at rest. The LV end-diastolic pressure-volume relationship was markedly shifted leftward. During simultaneous right atrial pacing and dobutamine infusion, cardiac output reserve and LV peak inflow velocities were lower in DOCA/WD-treated pigs at higher LV end-diastolic pressures. In LV biopsies, we observed myocyte hypertrophy, a shift toward the stiffer titin isoform N2B, and reduced total titin phosphorylation. LV superoxide production was increased, in part attributable to nitric oxide synthase (NOS) uncoupling, whereas AKT and NOS isoform expression and phosphorylation were unchanged. In conclusion, we developed a large-animal model in which loss of LV capacitance was associated with a titin isoform shift and dysfunctional NOS, in the presence of preserved LV ejection fraction. Our findings identify potential targets for the treatment of HFPEF in a relevant large-animal model.


2004 ◽  
Vol 286 (6) ◽  
pp. H2314-H2321 ◽  
Author(s):  
Jennifer C. Hirsch ◽  
Andrea R. Borton ◽  
Faris P. Albayya ◽  
Mark W. Russell ◽  
Richard G. Ohye ◽  
...  

Diastolic dysfunction results from impaired ventricular relaxation and is an important component of human heart failure. Genetic modification of intracellular calcium-handling proteins may hold promise to redress diastolic dysfunction; however, it is unclear whether other important aspects of myocyte function would be compromised by this approach. Accordingly, a large animal model of humanlike diastolic dysfunction was established through 1 yr of left ventricular (LV) pressure overload by descending thoracic aortic coarctation in canines. Serial echocardiography documented a progressive increase in LV mass. Diastolic dysfunction with preserved systolic function was evident at the whole organ and myocyte levels in this model, as determined by hemispheric sonomicrometric piezoelectric crystals, pressure transducer catheterization, and isolated myocyte studies. Gene transfer of the sarco(endo)plasmic reticulum calcium-ATPase (SERCA2a) and parvalbumin (Parv), a fast-twitch skeletal muscle Ca2+ buffer, restored cardiac myocyte relaxation in a dose-dependent manner under baseline conditions. At high Parv concentrations, sarcomere shortening was depressed. In contrast, during β-adrenergic stimulation, the expected enhancement of myocyte contraction (inotropy) was abrogated by SERCA2a but not by Parv. The mechanism of this effect is unknown, but it could relate to the uncoupling of SERCA2a/phospholamban in SERCA2a myocytes. Considering that inotropy is vital to overall cardiac performance, the divergent effects of SERCA2a and Parv reported here could impact potential therapeutic strategies for human heart failure.


2006 ◽  
Vol 12 (6) ◽  
pp. S52
Author(s):  
Patrick I. McConnell ◽  
Carlos L. Del Rio ◽  
Pawel Kwiatkowski ◽  
David J. Farrar ◽  
Benjamin C. Sun

2013 ◽  
Vol 5 (211) ◽  
pp. 211ra159-211ra159 ◽  
Author(s):  
L. Tilemann ◽  
A. Lee ◽  
K. Ishikawa ◽  
J. Aguero ◽  
K. Rapti ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Sven T Pleger ◽  
Changguang Shan ◽  
Jan Kziencek ◽  
Oliver Mueller ◽  
Raffi Bekeredjian ◽  
...  

Background: Cardiac expression of the Ca-dependent inotropic protein S100A1 is decreased in human end-stage heart failure (HF) and cardiomyocyte-targeted viral-based S100A1 gene transfer rescued failing myocardium in small animal models in vivo and in vitro via improved systolic and diastolic sarcoplasmic reticulum Ca-handling. We therefore hypothesized that cardioselective AAV9-S100A1 gene therapy will improve cardiac performance in a large animal experimental HF model under clinical conditions. Methods and Results: Left ventricular (LV) posterolateral myocardial infarction (MI) was induced in pigs by occlusion of the left coronary circumflex artery and resulted in LV failure (HF) 2 weeks post-MI reflected by a 40% and 27% reduction in LV +dp/dt max. and EF, respectively, as assessed by LV catheterization and echocardiography. Post-MI HF pigs were then randomized for retroinfusion of AAV9-luciferase (luc; n=6, 1.5×10 13 total viral particles, tvp) and AAV9-S100A1 (S100A1; n=6, 1.5×10 13 tvp) driven by a cardioselective promoter via the anterior cardiac vein while the left anterior descending artery was temporarily occluded. 14 weeks after cardiac gene transfer, the S100A1-treated HF group showed significantly enhanced S100A1 protein expression (+46.7±17.9%, P<0.05 vs. control groups) in targeted remote LV myocardium and improved indices of cardiac function and remodeling (luc vs. S100A1: +dp/dtmax: 983±81 vs. 1526±83 mmHg/s, EF: 39±2.1 vs. 61±3.7 %, P<0.05 S100A1 vs. luc, LV endsystolic diameter: luc 4.45±0.1 vs. S100A1 3.43 ±0.1 cm, P<0.05 S100A1 vs. luc, HR: 72±4 vs. 69±2, beats/min, P=n.s. S100A1 vs. luc). Importantly, analyses of renal, hepatic and hematopoetic function showed no alteration as assessed by unchanged transaminases, retention values and white blood cell counts compared to sham pigs. Conclusions: Our translational study provides proof of concept that AAV9-S100A1 based HF gene therapy is feasible and restores cardiac function in a large animal HF model under clinical conditions. Next, certified toxicological analysis and different AAV9-S100A1 dosage protocols will be assessed to eventually advance to first phase I/II clinical studies determining therapeutic efficiency of cardiac S100A1 gene therapy in HF patients.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Saad Sikanderkhel ◽  
Olawale Onibile ◽  
Gregory P Walcott ◽  
Steven M Pogwizd

Introduction: Atrial fibrillation is common in heart failure (HF). Understanding of the mechanisms of atrial fibrillation (AF) is limited by the paucity of large animal AF models, especially in the failing heart. We developed a large animal model of nonischemic heart failure (HF) in dogs by combined aortic insufficiency and aortic constriction and observed that a number of HF dogs developed paroxysmal AF on holter monitor. Here we characterize the spontaneously-occurring pAF in these HF dogs and perform electrophysiologic (EP) assessment of atrial refractoriness and AF inducibility along with echocardiographic imaging of left ventricle (LV) and left atrium (LA). Methods: HF was induced in dogs by aortic insufficiency and aortic constriction, and serial echocardiography (for LV fractional shortening (FS) and LA size) and Holter monitoring was performed. In control and HF dogs, EP study of atrial refractory period (AERP) and AF inducibility (duration and atrial cycle length (CL)) was performed. Results: By Holter monitoring, paroxysmal AF was noted in 5 dogs with episodes ranging from 15 to 94 beats long (mean of 49±27 beats, n=12). In EP studies, control dogs (N=3) exhibited AERP of 176±8 ms. Burst pacing resulted in AF of very brief duration (mean 32±24 sec) and a mean AF CL of 138±6 ms. LV FS averaged 37% and LA size averaged 4.3 cm2. HF dogs (N=5) exhibited RAERP of 150±8 (p=0.05 vs control). Two of these dogs had sustained AF with ventricular response up to 230 bpm on Holter monitor. In the other 3 HF dogs, burst pacing induced AF with a mean duration of 232±185 sec (at times with conversion to atrial flutter) and with a mean AF CL = 110±4 ms (p=0.002 vs control). Echo data showed LVFS averaged 30% and LA area of 14.9 cm2 (p=0.05 vs control). Conclusion: Thus we have developed a novel large animal model of HF that exhibits paroxysmal and sustained AF. This model will provide an opportunity for the study of underlying AF mechanisms, the progression of remodeling in HF hearts leading to AF, and the assessment of human-scale interventions to better treat and prevent this arrhythmia.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Angela Castellanos Rieger ◽  
Bryon A Tompkins ◽  
Makoto Natsumeda ◽  
Victoria Florea ◽  
Kevin Collon ◽  
...  

Background: Chronic Kidney Disease (CKD) is an independent risk factor for cardiovascular morbidity and mortality. Left ventricular (LV) hypertrophy and heart failure with preserved ejection fraction (HFpEF) are the primary manifestations of the cardiorenal syndrome in 60 to 80% of CKD patients. Therapies that improve morbidity and mortality in HFpEF are lacking. Stem cell therapy reduces fibrosis, increases neovascularization, and promotes cardiac repair in ischemic and non-ischemic cardiomyopathies. We hypothesized that stem cell treatment ameliorates HFpEF in a CKD model. Methods: Yorkshires pigs (n=27) underwent 5/6 nephrectomy via renal artery embolization and 4-weeks later received either: allogeneic (allo-) MSC (10х10 6 ), allo-kidney c-kit + cells (c-kit; 10х10 6 ), combination (MSC+c-kit; 1:1 ratio [5х10 6 each]), or placebo (each n=5). Cell therapy was delivered via the patent renal artery. Kidney function, renal and cardiac MRI, and PV loops were measured at baseline, and at 4- and 12-weeks (euthanasia) post-embolization. Results: The CKD model was confirmed by increased creatinine and BUN and decreased GFR. Mean arterial pressure (MAP) was not different between groups from baseline to 4 weeks (p=0.7). HFpEF was demonstrated at 4 weeks by increased LV mass (20.3%; p= 0.0001), wall thickening (p<0.008), EDP (p=0.01), EDPVR (p=0.005), and arterial elastance (p=0.03), with no change in EF. Diffuse intramyocardial fibrosis was evident in histological analysis and delayed enhancement MRI imaging. After 12 weeks, there was a significant difference in MAP between groups (p=0.04), with an increase in the placebo group (19.97± 8.65 mmHg, p=0.08). GFR significantly improved in the combination group (p=0.033). EDV increased in the placebo (p=0.009) and c-kit (p=0.004) groups. ESV increased most in the placebo group (7.14±1.62ml; p=0.022). EF, wall thickness, and LV mass did not differ between groups at 12 weeks. Conclusion: A CKD large animal model manifests the characteristics of HFpEF. Intra-renal artery allogeneic cell therapy was safe. A beneficial effect of cell therapy was observed in the combination and MSC groups. These findings have important implications on the use of cell therapy for HFpEF and cardiorenal syndrome.


Cardiology ◽  
2019 ◽  
Vol 145 (1) ◽  
pp. 53-62
Author(s):  
Fang Liu ◽  
Jianli Fu ◽  
David Hsi ◽  
Chao Sun ◽  
Guangbin He ◽  
...  

Background: Percutaneous intramyocardial (PIM) septal radiofrequency ablation (SRA) is a novel treatment approach for hypertrophic obstructive cardiomyopathy patients, but there has been lack of a large animal model to study PIM-SRA. We aimed to validate the long-term safety and efficacy of PIM-SRA and to observe pathological changes of the ablated interventricular septum (IVS) in a healthy sheep model. Methods and Results: Twelve sheep were randomized to the PIM-SRA group (n = 6) and the sham group (n = 6). In the PIM-SRA group, a radiofrequency (RF) electrode was inserted into the IVS with a maximum power of 80 W for 5 min. In the sham group, the RF electrode tip was positioned in the IVS segment but without RF power delivery. Septal hypokinesis was seen in all PIM-SRA group animals immediately after the procedure; the systolic wall thickening rate and motion amplitude of the ablated region decreased (p < 0.01), and the diastolic IVS thickness also decreased significantly over time (p < 0.01). ECG showed that all the sheep had normal sinus rhythm during the follow-up. Pathological examinations revealed scar tissue in the ablated region as expected. Conclusions: PIM-SRA produced precisely ablated myocardial tissue, reduced the IVS thickness significantly, preserved the global LV function, and avoided the incidence of conduction system damage in the long term. PIM-SRA was found to be a safe and effective minimally invasive septal reduction therapy.


Sign in / Sign up

Export Citation Format

Share Document