Abstract P310: Mitochondrial Electron Transport Chain Dysfunction Is Associated With Mg Deficiency Induced Diastolic Dysfunction

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Man Liu ◽  
Hong Liu ◽  
Richard T Clements ◽  
Feng Feng ◽  
Jin O-Uchi ◽  
...  

Introduction: The prevalence of heart failure with preserved ejection fraction (HFpEF) is increasing, although there is no specific treatment for HFpEF yet because of poor understanding of the underlying pathophysiology. Our previous studies show that hypomagnesemia contributes to diastolic dysfunction and HFpEF by regulation of mitochondrial function and that Mg supplementation improves diastolic function. In this study, we investigated how mitochondria were affected by Mg deficiency. Methods: C57BL/6J mice were fed with a low-Mg diet (HypoMg mice, 15-30 mg/kg Mg) or a normal Mg diet (control mice, 600 mg/kg Mg) for 6 weeks. Mg repletion was achieved by feeding HypoMg mice with normal diet for another 6 weeks. Results: HypoMg mice showed significantly decreased serum Mg (0.38±0.03 mM vs. 1.14±0.03 mM of control, P<0.0001), diastolic dysfunction (E/e’=21.1±1.1 vs. 15.4±0.4 of control, P=0.011), increased mitochondrial ROS (1.9±0.2-fold of control, P<0.0001), decreased total mitochondrial Mg content (3.6±1.8 vs. 18.3±4.7 μM total Mg/mg mitochondrial protein of control, P=0.019), decreased ATP production in hearts (1.2±0.2 vs. 2.7±0.2 μmol/g heart tissue of control, P=0.0002), decreased complex I activity (ΔOCR NADH-rotenone =0.27±0.10 vs. 1.02±0.04 of control, P=0.0004 measured with Seahorse), and decreased complex I protein levels (50.2% reduction compared with control mice, P=0.009). Mg repletion reversed all these changes. Conclusion: HypoMg-induced diastolic dysfunction likely results from HypoMg-induced electron transport chain dysfunction resulting from a decrease in mitochondrial Mg content. Mg repletion reverses these changes, reinforcing the known correlation of increased Mg intake and reduced heart failure symptoms. In deficiency states, Mg supplementation may represent a novel treatment for diastolic heart failure by improving mitochondrial function.

Cell ◽  
2004 ◽  
Vol 117 (6) ◽  
pp. 773-786 ◽  
Author(s):  
Jean-Ehrland Ricci ◽  
Cristina Muñoz-Pinedo ◽  
Patrick Fitzgerald ◽  
Béatrice Bailly-Maitre ◽  
Guy A Perkins ◽  
...  

1994 ◽  
Vol 22 (1) ◽  
pp. 230-233 ◽  
Author(s):  
Robert M. Hollingworth ◽  
Kabeer I. Ahammadsahib ◽  
G. Gadelhak ◽  
J. L. McLaughlin

PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e12696 ◽  
Author(s):  
Kevork Hagopian ◽  
Kristina L. Weber ◽  
Darren T. Hwee ◽  
Alison L. Van Eenennaam ◽  
Guillermo López-Lluch ◽  
...  

2011 ◽  
Vol 286 (39) ◽  
pp. 33910-33920 ◽  
Author(s):  
Bogdan I. Fedeles ◽  
Angela Y. Zhu ◽  
Kellie S. Young ◽  
Shawn M. Hillier ◽  
Kyle D. Proffitt ◽  
...  

2004 ◽  
Vol 380 (1) ◽  
pp. 193-202 ◽  
Author(s):  
Fredrik I. JOHANSSON ◽  
Agnieszka M. MICHALECKA ◽  
Ian M. MØLLER ◽  
Allan G. RASMUSSON

The inner mitochondrial membrane is selectively permeable, which limits the transport of solutes and metabolites across the membrane. This constitutes a problem when intramitochondrial enzymes are studied. The channel-forming antibiotic AlaM (alamethicin) was used as a potentially less invasive method to permeabilize mitochondria and study the highly branched electron-transport chain in potato tuber (Solanum tuberosum) and pea leaf (Pisum sativum) mitochondria. We show that AlaM permeabilized the inner membrane of plant mitochondria to NAD(P)H, allowing the quantification of internal NAD(P)H dehydrogenases as well as matrix enzymes in situ. AlaM was found to inhibit the electron-transport chain at the external Ca2+-dependent rotenone-insensitive NADH dehydrogenase and around complexes III and IV. Nevertheless, under optimal conditions, especially complex I-mediated NADH oxidation in AlaM-treated mitochondria was much higher than what has been previously measured by other techniques. Our results also show a difference in substrate specificities for complex I in mitochondria as compared with inside-out submitochondrial particles. AlaM facilitated the passage of cofactors to and from the mitochondrial matrix and allowed the determination of NAD+ requirements of malate oxidation in situ. In summary, we conclude that AlaM provides the best method for quantifying NADH dehydrogenase activities and that AlaM will prove to be an important method to study enzymes under conditions that resemble their native environment not only in plant mitochondria but also in other membrane-enclosed compartments, such as intact cells, chloroplasts and peroxisomes.


Sign in / Sign up

Export Citation Format

Share Document