Abstract T P84: Neuroprotective Effect of Probenecid in a Rat Model of Transient Global Cerebral Ischemia-Reperfusion

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Rui-li Wei ◽  
Yan Xu ◽  
Jing-ye Wang ◽  
Ben-yan Luo

Background and Purpose: Probenecid (PROB) has been used for decades to treat gouty arthritis with few side effects and recent studies revealed that it is also a specific inhibitor of pannexin-1 channel. Panx1 channel was activated by ischemic injury and inhibition of the panx1 channel maybe efficacious in stroke treatment. However, the role of PROB in cerebral ischemia /reperfusion (I/R) injury remains unclear. The aim of this study was to investigate the role of PROB in the transient global cerebral I/R injury in rats and its protective mechanisms. Methods: Twenty minutes of transient global cerebral I/R was induced using the four-vessel occlusion (4-VO) method in rats. PROB was given in the different dose, time and administration routes to verify its neuroprotective effects. Neuronal death in the hippocampal CA1 region was observed using H & E staining 7 days after ischemia. Molecular mechanisms of activation of calpain-cathepsin pathway and inflammatory cells by I/R injury were also investigated. Results: Treatment with PROB (0.1, 1 and 10 mg/kg ) 10 min before ischemia protected against I/R-induced hippocampal CA1 neuronal death significantly, and 1 mg/kg has best protective effect. Post-insult treatment 2h after reperfusion also protected against neuronal death and prolonged use for continuous 7 days could improve its protective effects compared to the single use 6h after reperfusion.Furthermore,oral administration also had protective effect. Cathepsin B expression was inceased significantly in CA-1 region after ischemia and PROB treatment could inhibit its expression. Expression of both calpain-1 and hsp70 at 1d ,2d and 3d after reperfusion were upregulated, whereas the expression of calpain-1 was inhibited and hsp70 was strengthened by pre-treatment with PROB. Prolonged PROB treatment suppressed the activation of microglia and astrocytes, reduced the number of microglia in CA1 region. Conclusions: Our study indicates that PROB protects against transient global cerebral I/R injury administrated before ischemia and even 6h after reperfusion by reducing calpain-1 expression , inhibiting lysosomal rupture and the activation of the glia, which suggests RPOB may be a promising therapeutic drug for clinical treatment of ischemic cerebral injury.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10056
Author(s):  
Yue Zhang ◽  
Xinqing Guo ◽  
Guohua Wang ◽  
Jidan Liu ◽  
Peiyu Liang ◽  
...  

Rhodioloside, the main effective constituent of Rhodiola rosea, demonstrates antiaging and antioxidative stress functions and inhibits calcium overloading in cells. These functions imply that rhodioloside may exert protective effects on hippocampal neurons after total cerebral ischemia/reperfusion injury. In this study, male Wistar rat models of total cerebral ischemia were constructed and randomly divided into four groups: sham-operation, ischemia/reperfusion, low-dosage, and high-dosage groups. The result showed that rhodioloside treatment reduced the apoptosis rates of hippocampal neurons and the histological grades of cone cells in the hippocampal CA1 region, but neuronal density was significantly increased. Besides, the protein expressions of Bcl-2/Bax and p53 were measured and found Bcl-2/Bax was increased and p53 protein level was reduced. Therefore, rhodioloside might have protective effects on rats with ischemia/reperfusion brain injury.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lin Guo ◽  
Zhixuan Huang ◽  
Lijuan Huang ◽  
Jia Liang ◽  
Peng Wang ◽  
...  

Abstract Background The incidence of ischemic stroke in the context of vascular disease is high, and the expression of growth-associated protein-43 (GAP43) increases when neurons are damaged or stimulated, especially in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). Experimental design We bioengineered neuron-targeting exosomes (Exo) conjugated to a monoclonal antibody against GAP43 (mAb GAP43) to promote the targeted delivery of quercetin (Que) to ischemic neurons with high GAP43 expression and investigated the ability of Exo to treat cerebral ischemia by scavenging reactive oxygen species (ROS). Results Our results suggested that Que loaded mAb GAP43 conjugated exosomes (Que/mAb GAP43-Exo) can specifically target damaged neurons through the interaction between Exo-delivered mAb GAP43 and GAP43 expressed in damaged neurons and improve survival of neurons by inhibiting ROS production through the activation of the Nrf2/HO-1 pathway. The brain infarct volume is smaller, and neurological recovery is more markedly improved following Que/mAb GAP43-Exo treatment than following free Que or Que-carrying exosome (Que-Exo) treatment in a rat induced by MCAO/R. Conclusions Que/mAb GAP43-Exo may serve a promising dual targeting and therapeutic drug delivery system for alleviating cerebral ischemia/reperfusion injury.


2017 ◽  
Vol 20 (12) ◽  
pp. 1167-1181 ◽  
Author(s):  
Wen-Yu Wu ◽  
Yue Zhong ◽  
Yu-Ting Lu ◽  
Ying Sun ◽  
Nian-Guang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document