scholarly journals Current Status of Pico Hydro Power Systems based on the Spontaneous Initiatives in the Southern Highlands of Tanzania

2014 ◽  
Vol 2014 (85) ◽  
pp. 13-21
Author(s):  
Ryugo KUROSAKI ◽  
Teppei OKAMURA ◽  
Juichi ITANI
Author(s):  
Javed A. Chattha ◽  
Mohammad S. Khan ◽  
Anwar ul-Haque

The total installed electric power capacity of Pakistan is about 20,000 MW. Pakistan is currently facing a power deficit of about 4,000 MW. This deficit is creating huge difficulties for the consumers as electrical power load shedding has become a norm in all over the country. Currently only about 33% of the total power is being produced by hydro sources and major electric power is still produced by burning oil and gas. The hydro potential of Pakistan is estimated to be about 41 GW, out of which 1,290 MW can be generated by micro-hydro systems. These potential off grid micro-hydro systems are very essential for the consumers living in the remote areas of Pakistan and may be installed on canals and water falls which are abundant in the remote areas. This paper discusses the potential and the status of installed of hydro power systems in Pakistan. Cross flow turbines are being manufactured in Pakistan and are usually quite successful for micro-hydro systems. However, cross flow turbines are not suitable for majority of the prospective site conditions. Furthermore, custom made conventional turbines are not mass produced and for the micro-hydro systems, standard centrifugal pumps may be used as turbines. These centrifugal pumps are easily available in the market at comparatively much lower cost and shorter delivery periods. A pump was installed at a suitable site for generation of electricity, while running in turbine mode. It was initially estimated that the Pump as Turbine, PaT would be able to generate about 70 kW of power based on the available flow rate and head parameters at the site. Currently only half of that power is being generated by the PaT, under study. Efforts are underway to rectify the problems being faced and improve the power generation capacity of the installed unit. This paper discusses the problems associated with the use of PaT and measures being undertaken to make it feasible for the use of micro-hydro systems. Two major issues; draft tube design and presence of trash in the canal water, responsible for performance deterioration have been discussed in this paper.


2015 ◽  
Vol 293 ◽  
pp. 312-328 ◽  
Author(s):  
Harikishan R. Ellamla ◽  
Iain Staffell ◽  
Piotr Bujlo ◽  
Bruno G. Pollet ◽  
Sivakumar Pasupathi

2018 ◽  
Vol 4 (1) ◽  
pp. 77-86
Author(s):  
Nuno Fonseca ◽  
André Madureira ◽  
João Peças Lopes ◽  
Manuel Matos

This work is within the scope of set of consultancy studies made for Portuguese islands. It focuses on the integration of Pumped Storage Power in isolated islands. The paper starts to address several power systems circumstances about two Portuguese islands on the energetic level. For each of these islands, an independent examination of the conditions to install a reversible hydro power plant is accomplished. Therefore, the energy volume to be stored due to excess of renewable generation and the ideal power and number of the pumps and turbines to be installed were identified and evaluated for the sake of using the produced energy surplus as to be pumped and later generated. The paper enhances the importance of storing energy in the operation of isolated and small systems with considerable amount of intermittent power resources as well as the conditions for the viability of installing new exploitations of this kind.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 185 ◽  
Author(s):  
Amrita Raghoebarsing ◽  
Angèle Reinders

The aim of this paper is to give an overview of the energy sector and the current status of photovoltaic (PV) systems in Suriname and to investigate which role PV systems can play in this country’s future energy transition. At this moment, 64% of the power is available from diesel/heavy fuel oil (HFO) gensets while 36% is available from renewables namely hydroelectric power systems and PV systems. Suriname has renewable energy (RE) targets for 2017 and 2022 which already have been achieved by this 36%. However, the RE target of 2027 of 47% must be achieved yet. As there is abundant irradiance available, on an average 1792 kWh/m2/year and because several PV systems have already been successfully implemented, PV can play an important role in the energy transition of Suriname. In order to achieve the 2027 target with only PV systems, an additional 110 MWp of installed PV capacity will be required. Governmental and non-governmental institutes have planned PV projects. If these will be executed in the future than annually 0.8 TWh electricity will be produced by PV systems. In order to meet the electricity demand of 2027 fully, 2.2 TWh PV electricity will be required which implies that more PV systems must be implemented in Suriname besides the already scheduled ones.


World Pumps ◽  
2015 ◽  
Vol 2015 (4) ◽  
pp. 24-27 ◽  
Author(s):  
Claudia Proeger
Keyword(s):  

2018 ◽  
Vol 158 ◽  
pp. 1-14 ◽  
Author(s):  
P. Beires ◽  
M.H. Vasconcelos ◽  
C.L. Moreira ◽  
J.A. Peças Lopes

2019 ◽  
Vol 11 (20) ◽  
pp. 5758 ◽  
Author(s):  
Nawaf S. Alhajeri ◽  
Fahad M. Al-Fadhli ◽  
Ahmed Z. Aly

Obtaining accurate estimates of emissions from electric power systems is essential for predicting air quality and evaluating the effectiveness of any future control technologies. This paper aimed to develop unit-based emissions inventories for electric power systems in Kuwait using different parameters, including fuel specifications and consumption, combustion technology and its efficiency, unit capacity, and boiler type. The study also estimated the future emissions of NOx, SO2, CO, CO2, and PM10 up to the year 2030 using a multivariate regression model in addition to predicting future energy demand. The results showed that annual (2010–2015) emissions of all air pollutants, excluding SO2 and PM10, increased over the study period. CO had the greatest increase of 41.9%, whereas SO2 levels decreased the most by 13% over the 2010 levels, due to the replacement of heavy fuel oil. Energy consumption in 2015 stood at approximately 86 PJ, with natural gas, gas oil, crude oil, and heavy fuel oil making up 51.2%, 10.7%, 3.1%, and 35%, respectively. Energy demand was projected to grow at an annualized rate of 2.8% by 2030 compared to 2015 levels. The required installed capacity to meet this demand was estimated to be approximately 21.8 GW (a 34% increase in capacity compared to 2015 levels). The projected emission rates showed that, of the five air pollutants, SO2 and PM10 are expected to decrease by 2030 by 34% and 11%, respectively. However, peak monthly emissions of SO2 would still only be 14% lower compared to the 2015 monthly average. In contrast, emission levels are projected to increase by 34.3%, 54.8%, and 71.8% for CO2, NOx, and CO, respectively, by 2030 compared to 2015 levels. Accordingly, a more ambitious target of renewables penetration needs to be adopted to reduce emission levels going forward.


2020 ◽  
Vol 191 ◽  
pp. 02004
Author(s):  
Alexandra Khalyasmaa ◽  
Stanislav Eroshenko ◽  
Sergey Mitrofanov ◽  
Anastasia Rusina ◽  
Anna Arestova ◽  
...  

The paper presents a simulation model of a hydroelectric power plants chain. The model allows solving the problem of hydro power plants (HPPs) operation mode planning in a unified power system, taking into account the optimization of water resources. The optimal filling and decrease of storage was performed in MATLAB Simulink software. The hydraulic properties of the river flow between the stations and the corresponding time lags in the functioning of the down-river station are taken into account. The model allows continuously monitoring changes in water pressure at hydropower plants and, as a result, uses the family of flow characteristics for various water pressures. The issues of optimizing the participation of hydroelectric power stations in the regimes of large hydrothermal power systems were also raised.


2013 ◽  
Vol 46 (6) ◽  
pp. 13-18 ◽  
Author(s):  
T.S. Letia ◽  
A. Astilean ◽  
O. Cuibus ◽  
D. Mircescu

Sign in / Sign up

Export Citation Format

Share Document