Models of Functional Organization of the Lateral Prefrontal Cortex in Verbal Working Memory: Evidence in Favor of the Process Model

2002 ◽  
Vol 14 (7) ◽  
pp. 1054-1063 ◽  
Author(s):  
Laura H. F. Barde ◽  
Sharon L. Thompson-Schill

Research on the functional organization of the lateral prefrontal cortex (PFC) in working memory continues to be fairly equivocal between two major frameworks: organization-by-process or organization-by-material. Although there is fairly strong evidence for organization-by-process models from event-related fMRI studies, some investigators argue that the nature of the stimulus material better defines the functional organization of the lateral PFC, particularly in more ventral regions (BA 47/45/44). Specifically, the anterior region of the ventrolateral PFC (BA 47/45) is hypothesized to subserve semantic processing while the posterior region (BA 44) may subserve phonological processing. In the current event-related fMRI study, we directly compared process-related versus material-related organizational principles in a verbal working memory task. Subjects performed a modified delayed response task in which they (1) retained a list of five words or five nonwords during the delay period (“maintenance”), or (2) performed a semantic (size reordering) or phonological (alphabetical reordering) task on the word or nonword lists, respectively (“manipulation”). We did not find evidence during the delay period of our task to support claims of anterior-posterior specializations in the ventrolateral PFC for semantic versus phonological processing. Subjects did, however, display greater neuronal activity during the delay period of manipulation trials than maintenance trials in both the dorsolateral PFC and posterior ventrolateral regions. These data are more consistent with the process model of the organization of lateral PFC in verbal working memory.

2002 ◽  
Vol 87 (1) ◽  
pp. 567-588 ◽  
Author(s):  
Kazuyoshi Takeda ◽  
Shintaro Funahashi

To examine what kind of information task-related activity encodes during spatial working memory processes, we analyzed single-neuron activity in the prefrontal cortex while two monkeys performed two different oculomotor delayed-response (ODR) tasks. In the standard ODR task, monkeys were required to make a saccade to the cue location after a 3-s delay, whereas in the rotatory ODR (R-ODR) task, they were required to make a saccade 90° clockwise from the cue location after the 3-s delay. By comparing the same task-related activities in these two tasks, we could determine whether such activities encoded the location of the visual cue or the direction of the saccade. One hundred twenty one neurons exhibited task-related activity in relation to at least one task event in both tasks. Among them, 41 neurons exhibited directional cue-period activity, most of which encoded the location of the visual cue. Among 56 neurons with directional delay-period activity, 86% encoded the location of the visual cue, whereas 13% encoded the direction of the saccade. Among 57 neurons with directional response-period activity, 58% encoded the direction of the saccade, whereas 35% encoded the location of the visual cue. Most neurons whose response-period activity encoded the location of the visual cue also exhibited directional delay-period activity that encoded the location of the visual cue as well. The best directions of these two activities were identical, and most of these response-period activities were postsaccadic. Therefore this postsaccadic activity can be considered a signal to terminate unnecessary delay-period activity. Population histograms encoding the location of the visual cue showed tonic sustained activation during the delay period. However, population histograms encoding the direction of the saccade showed a gradual increase in activation during the delay period. These results indicate that the transformation from visual input to motor output occurs in the dorsolateral prefrontal cortex. The analysis using population histograms suggests that this transformation occurs gradually during the delay period.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jung Won Bae ◽  
Huijeong Jeong ◽  
Young Ju Yoon ◽  
Chan Mee Bae ◽  
Hyeonsu Lee ◽  
...  

AbstractIt is unclear how different types of cortical projection neurons work together to support diverse cortical functions. We examined the discharge characteristics and inactivation effects of intratelencephalic (IT) and pyramidal tract (PT) neurons—two major types of cortical excitatory neurons that project to cortical and subcortical structures, respectively—in the deep layer of the medial prefrontal cortex in mice performing a delayed response task. We found stronger target-dependent firing of IT than PT neurons during the delay period. We also found the inactivation of IT neurons, but not PT neurons, impairs behavioral performance. In contrast, PT neurons carry more temporal information than IT neurons during the delay period. Our results indicate a division of labor between IT and PT projection neurons in the prefrontal cortex for the maintenance of working memory and for tracking the passage of time, respectively.


1999 ◽  
Vol 11 (2) ◽  
pp. 567-574 ◽  
Author(s):  
Adrian M. Owen ◽  
Nicholas J. Herrod ◽  
David K. Menon ◽  
John C. Clark ◽  
Steve P. M. J. Downey ◽  
...  

1998 ◽  
Vol 353 (1377) ◽  
pp. 1819-1828 ◽  
Author(s):  
◽  
S. M. Courtney ◽  
L. Petit ◽  
J. V. Haxby ◽  
L. G. Ungerleider

Working memory enables us to hold in our ‘mind's eye’ the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain–imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on–line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image–based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long–term memory.


2001 ◽  
Vol 86 (4) ◽  
pp. 2041-2053 ◽  
Author(s):  
Toshiyuki Sawaguchi ◽  
Michiyo Iba

In primates, dorsolateral areas of the prefrontal cortex (PFC) play a major role in visuospatial working memory. To examine the functional organization of the PFC for representing visuospatial working memory, we produced reversible local inactivation, with the local injection of muscimol (5 μg, 1 μl), at various sites ( n = 100) in the dorsolateral PFC of monkeys and observed the behavioral consequences in an oculomotor delayed-response task that required memory-guided saccades for locations throughout both visual fields. At 82 sites, the local injection of muscimol induced deficits in memory-guided saccades to a few specific, usually contralateral, target locations that varied with the location of the injection site. Such deficits depended on the delay length, and longer delays were associated with larger deficits in memory-guided saccades. The injection sites and affected spatial locations of the target showed a gross topographical relationship. No deficits appeared for a control task in which the subject was required to make a visually guided saccade to a visible target. These findings suggest that a specific site in the dorsolateral PFC is responsible for the working memory process for a specific visuospatial coordinate to guide goal-directed behavior. Further, memoranda for specific visuospatial coordinates appear to be represented in a topographical memory mapwithin the dorsolateral PFC to represent visuospatial working memory processes.


2020 ◽  
Author(s):  
Sihai Li ◽  
Christos Constantinidis ◽  
Xue-Lian Qi

ABSTRACTThe dorsolateral prefrontal cortex plays a critical role in spatial working memory and its activity predicts behavioral responses in delayed response tasks. Here we addressed whether this predictive ability extends to categorical judgments based on information retained in working memory, and is present in other brain areas. We trained monkeys in a novel, Match-Stay, Nonmatch-Go task, which required them to observe two stimuli presented in sequence with an intervening delay period between them. If the two stimuli were different, the monkeys had to saccade to the location of the second stimulus; if they were the same, they held fixation. Neurophysiological recordings were performed in areas 8a and 46 of the dlPFC and 7a and lateral intraparietal cortex (LIP) of the PPC. We hypothesized that random drifts causing the peak activity of the network to move away from the first stimulus location and towards the location of the second stimulus would result in categorical errors. Indeed, for both areas, when the first stimulus appeared in a neuron’s preferred location, the neuron showed significantly higher firing rates in correct than in error trials. When the first stimulus appeared at a nonpreferred location and the second stimulus at a preferred, activity in error trials was higher than in correct. The results indicate that the activity of both dlPFC and PPC neurons is predictive of categorical judgments of information maintained in working memory, and the magnitude of neuronal firing rate deviations is revealing of the contents of working memory as it determines performance.SIGNIFICANCE STATEMENTThe neural basis of working memory and the areas mediating this function is a topic of controversy. Persistent activity in the prefrontal cortex has traditionally been thought to be the neural correlate of working memory, however recent studies have proposed alternative mechanisms and brain areas. Here we show that persistent activity in both the dorsolateral prefrontal cortex and posterior parietal cortex predicts behavior in a working memory task that requires a categorical judgement. Our results offer support to the idea that a network of neurons in both areas act as an attractor network that maintains information in working memory, which informs behavior.


2003 ◽  
Vol 19 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Guillaume Thierry ◽  
Danielle Ibarrola ◽  
Jean-François Démonet ◽  
Dominique Cardebat

2016 ◽  
Vol 114 (2) ◽  
pp. 394-399 ◽  
Author(s):  
John D. Murray ◽  
Alberto Bernacchia ◽  
Nicholas A. Roy ◽  
Christos Constantinidis ◽  
Ranulfo Romo ◽  
...  

Working memory (WM) is a cognitive function for temporary maintenance and manipulation of information, which requires conversion of stimulus-driven signals into internal representations that are maintained across seconds-long mnemonic delays. Within primate prefrontal cortex (PFC), a critical node of the brain’s WM network, neurons show stimulus-selective persistent activity during WM, but many of them exhibit strong temporal dynamics and heterogeneity, raising the questions of whether, and how, neuronal populations in PFC maintain stable mnemonic representations of stimuli during WM. Here we show that despite complex and heterogeneous temporal dynamics in single-neuron activity, PFC activity is endowed with a population-level coding of the mnemonic stimulus that is stable and robust throughout WM maintenance. We applied population-level analyses to hundreds of recorded single neurons from lateral PFC of monkeys performing two seminal tasks that demand parametric WM: oculomotor delayed response and vibrotactile delayed discrimination. We found that the high-dimensional state space of PFC population activity contains a low-dimensional subspace in which stimulus representations are stable across time during the cue and delay epochs, enabling robust and generalizable decoding compared with time-optimized subspaces. To explore potential mechanisms, we applied these same population-level analyses to theoretical neural circuit models of WM activity. Three previously proposed models failed to capture the key population-level features observed empirically. We propose network connectivity properties, implemented in a linear network model, which can underlie these features. This work uncovers stable population-level WM representations in PFC, despite strong temporal neural dynamics, thereby providing insights into neural circuit mechanisms supporting WM.


2007 ◽  
Vol 19 (5) ◽  
pp. 761-775 ◽  
Author(s):  
Hannah R. Snyder ◽  
Keith Feigenson ◽  
Sharon L. Thompson-Schill

Debates about the function of the prefrontal cortex are as old as the field of neuropsychology—often dated to Paul Broca's seminal work. Theories of the functional organization of the prefrontal cortex can be roughly divided into those that describe organization by process and those that describe organization by material. Recent studies of the function of the posterior, left inferior frontal gyrus (pLIFG) have yielded two quite different interpretations: One hypothesis holds that the pLIFG plays a domain-specific role in phonological processing, whereas another hypothesis describes a more general function of the pLIFG in cognitive control. In the current study, we distinguish effects of increasing cognitive control demands from effects of phonological processing. The results support the hypothesized role for the pLIFG in cognitive control, and more task-specific roles for posterior areas in phonology and semantics. Thus, these results suggest an alternative explanation of previously reported phonology-specific effects in the pLIFG.


2018 ◽  
Vol 30 (7) ◽  
pp. 935-950 ◽  
Author(s):  
Zoran Tiganj ◽  
Jason A. Cromer ◽  
Jefferson E. Roy ◽  
Earl K. Miller ◽  
Marc W. Howard

Cognitive theories suggest that working memory maintains not only the identity of recently presented stimuli but also a sense of the elapsed time since the stimuli were presented. Previous studies of the neural underpinnings of working memory have focused on sustained firing, which can account for maintenance of the stimulus identity, but not for representation of the elapsed time. We analyzed single-unit recordings from the lateral prefrontal cortex of macaque monkeys during performance of a delayed match-to-category task. Each sample stimulus triggered a consistent sequence of neurons, with each neuron in the sequence firing during a circumscribed period. These sequences of neurons encoded both stimulus identity and elapsed time. The encoding of elapsed time became less precise as the sample stimulus receded into the past. These findings suggest that working memory includes a compressed timeline of what happened when, consistent with long-standing cognitive theories of human memory.


Sign in / Sign up

Export Citation Format

Share Document