A Control System for a Flexible Spine Belly-Dancing Humanoid

2006 ◽  
Vol 12 (1) ◽  
pp. 63-88 ◽  
Author(s):  
Jimmy Or

Recently, there has been a lot of interest in building anthropomorphic robots. Research on humanoid robotics has focused on the control of manipulators and walking machines. The contributions of the torso towards ordinary movements (such as walking, dancing, attracting mates, and maintaining balance) have been neglected by almost all humanoid robotic researchers. We believe that the next generation of humanoid robots will incorporate a flexible spine in the torso. To meet the challenge of controlling this kind of high-degree-of-freedom robot, a new control architecture is necessary. Inspired by the rhythmic movements commonly exhibited in lamprey locomotion as well as belly dancing, we designed a controller for a simulated belly-dancing robot using the lamprey central pattern generator. Experimental results show that the proposed lamprey central pattern generator module could potentially generate plausible output patterns, which could be used for all the possible spine motions with minimized control parameters. For instance, in the case of planar spine motions, only three input parameters are required. Using our controller, the simulated robot is able to perform complex torso movements commonly seen in belly dancing as well. Our work suggests that the proposed controller can potentially be a suitable controller for a high-degree-of-freedom, flexible spine humanoid robot. Furthermore, it allows us to gain a better understanding of belly dancing by synthesis.

2005 ◽  
Vol 02 (01) ◽  
pp. 81-104 ◽  
Author(s):  
JIMMY OR ◽  
ATSUO TAKANISHI

Research on humanoid robotics has up to now been focused on the control of manipulators and walking machines. The contributions of body torso torwards daily activities have been neglected. To address this deficient area of humanoid robotics research, we developed a unique flexible spine biped humanoid robot. Inspired by the rhythmic and wave-like motions commonly seen in swimming lamprey and in belly dancing, we investigated the possibility of controlling the spine of our robot using the lamprey central pattern generator (CPG). Experimental results show that our robot is capable of mimicing both basic and complex spine motions with fewer actuators than the human spine and using only three input parameters (global and extra excitations from the brainstem, plane of actions). Our work suggests that the CPG is a suitable controller for humanoid spine motions because it can control a high degree of freedom mechanical spine with minimized control parameters. No complex computations of spine trajectories are involved. Furthermore, since our robot can move its upper body dynamically while standing and without external supports, it may be used as a prototype for the next generation of humanoid robots.


1982 ◽  
Vol 99 (1) ◽  
pp. 197-205 ◽  
Author(s):  
J. A. Kahn ◽  
A. Roberts

Xenopus embryos struggle when restrained. Struggling involves rhythmic movements of large amplitude, in which waves of bending propagate from the tail to the head. Underlying this, electrical activity in myotomal muscles occurs in rhythmic bursts that alternate on either side of a segment. Bursts in ipsilateral segments occur in a caudo-rostral sequence. Curarized embryos can generate motor nerve activity in a struggling pattern in the absence of rhythmic sensory stimulation; the pattern is therefore produced by a central pattern generator.


2009 ◽  
Vol 21 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Kensuke Harada ◽  
◽  
Mitsuharu Morisawa ◽  
Shin-ichiro Nakaoka ◽  
Kenji Kaneko ◽  
...  

For the purpose of realizing the humanoid robot walking on uneven terrain, this paper proposes the kinodynamic gait planning method where both kinematics and dynamics of the system are considered. We can simultaneously plan both the foot-place and the whole-body motion taking the dynamical balance of the robot into consideration. As a dynamic constraint, we consider the differential equation of the robot's CoG. To solve this constraint, we use a walking pattern generator. We randomly sample the configuration space to search for the path connecting the start and the goal configurations. To show the effectiveness of the proposed methods, we show simulation and experimental results where the humanoid robot HRP-2 walks on rocky cliff with hands contacting the environment.


2012 ◽  
Vol 197 ◽  
pp. 415-422 ◽  
Author(s):  
Hong Liu ◽  
Qing Sun

It is a great challenge to plan motion for humanoid robots in complex environments especially when the terrain is cluttered and discrete. To address this problem, a novel method is proposed in this paper by planning the gait according to the stance sequence and ZMP (Zero Moment Point) reference. It consists of two components: an adaptive footstep planner and a walking pattern generator. The adaptive footstep planner can generate the stance path according to the walking rules and adjust the orientation of body relevantly. As the footstep locations are determined, Linear Inverted Pendulum Model (LIPM) is used to generate the walking pattern with a moving ZMP reference. As demonstrated in experiments on the humanoid robot HOAP-2, our method can successfully plan footstep trajectories as well as generate the stable and natural-looking gait in typical cluttered and discrete environments.


2004 ◽  
Vol 01 (04) ◽  
pp. 637-649
Author(s):  
TAKAHIRO MIYASHITA ◽  
HIROSHI ISHIGURO

Human behaviors consist of both voluntary and involuntary motions. Almost all behaviors of task-oriented robots, however, consist solely of voluntary motions. Involuntary motions are important for generating natural motions like those of humans. Thus, we propose a natural behavior generation method for humanoid robots that is a hybrid generation between voluntary and involuntary motions. The key idea of our method is to control robots with a hybrid controller that combines the functions of a communication behavior controller and body balancing controllers. We also develop a wheeled inverted pendulum type of humanoid robot, named "Robovie-III," in order to generate involuntary motions like oscillation. This paper focuses on the system architecture of this robot. By applying our method to this robot and conducting preliminary experiments, we verify its validity. Experimental results show that the robot generates both voluntary and involuntary motions.


2005 ◽  
Vol 02 (03) ◽  
pp. 361-387 ◽  
Author(s):  
MIOMIR VUKOBRATOVIĆ ◽  
BRANISLAV BOROVAC ◽  
KALMAN BABKOVIĆ

The rapid development of robotics has led to the appearance of very complex humanoid robots possessing already about fifty degrees of freedom. Bearing in mind that such robots will be increasingly more engaged in the close environment of humans, it is expected that the problem of "working coexistence" of man and robot sharing the common workspace will become acute in the near future. Since no significant rearrangement of the human's environment because of the presence of robots can be expected, robots will have to further "adapt" to the environment previously dedicated only to humans. This paper raises some new fundamental questions concerning the necessary degree of anthropomorphism of humanoid robots. What is particularly challenging is how to achieve a sufficiently high degree of anthropomorphism with a reasonable number of degrees of freedom. Using the example of a humanoid robot, concrete measures are proposed as to how to attain the desired degree of its anthropomorphism.


2012 ◽  
Vol 09 (01) ◽  
pp. 1250005 ◽  
Author(s):  
YOUNG-DAE HONG ◽  
JONG-HWAN KIM

In this paper, an evolutionary optimized footstep planner for the navigation of humanoid robots is proposed. A footstep planner based on a univector field navigation method is proposed to generate a command state (CS) as an input to a modifiable walking pattern generator (MWPG) at each footstep. The MWPG generates associated trajectories of every leg joint to follow the given CS. In order to satisfy various objectives in the navigation, the univector fields are optimized by evolutionary programming. The three objectives, shortest elapsed time to get to a destination, safety without obstacle collision, and less energy consumption, are considered with mechanical constraints of a real humanoid robot, that is, the maximum step length and allowable yawing range of the feet. The effectiveness of the proposed algorithm is demonstrated through both computer simulation and experiment for a small-sized humanoid robot, HanSaRam-IX.


Sign in / Sign up

Export Citation Format

Share Document