CONTRIBUTION TO THE STUDY OF ANTHROPOMORPHISM OF HUMANOID ROBOTS

2005 ◽  
Vol 02 (03) ◽  
pp. 361-387 ◽  
Author(s):  
MIOMIR VUKOBRATOVIĆ ◽  
BRANISLAV BOROVAC ◽  
KALMAN BABKOVIĆ

The rapid development of robotics has led to the appearance of very complex humanoid robots possessing already about fifty degrees of freedom. Bearing in mind that such robots will be increasingly more engaged in the close environment of humans, it is expected that the problem of "working coexistence" of man and robot sharing the common workspace will become acute in the near future. Since no significant rearrangement of the human's environment because of the presence of robots can be expected, robots will have to further "adapt" to the environment previously dedicated only to humans. This paper raises some new fundamental questions concerning the necessary degree of anthropomorphism of humanoid robots. What is particularly challenging is how to achieve a sufficiently high degree of anthropomorphism with a reasonable number of degrees of freedom. Using the example of a humanoid robot, concrete measures are proposed as to how to attain the desired degree of its anthropomorphism.

2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Samer Alfayad ◽  
Fethi B. Ouezdou ◽  
Faycal Namoun

This paper deals with the design of a new class of hybrid mechanism dedicated to humanoid robotics application. Since the designing and control of humanoid robots are still open questions, we propose the use of a new class of mechanisms in order to face several challenges that are mainly the compactness and the high power to mass ratio. Human ankle and wrist joints can be considered more compact with the highest power capacity and the lowest weight. The very important role played by these joints during locomotion or manipulation tasks makes their design and control essential to achieve a robust full size humanoid robot. The analysis of all existing humanoid robots shows that classical solutions (serial or parallel) leading to bulky and heavy structures are usually used. To face these drawbacks and get a slender humanoid robot, a novel three degrees of freedom hybrid mechanism achieved with serial and parallel substructures with a minimal number of moving parts is proposed. This hybrid mechanism that is able to achieve pitch, yaw, and roll movements can be actuated either hydraulically or electrically. For the parallel submechanism, the power transmission is achieved, thanks to cables, which allow the alignment of actuators along the shin or the forearm main axes. Hence, the proposed solution fulfills the requirements induced by both geometrical, power transmission, and biomechanics (range of motion) constraints. All stages including kinematic modeling, mechanical design, and experimentation using the HYDROïD humanoid robot’s ankle mechanism are given in order to demonstrate the novelty and the efficiency of the proposed solution.


2006 ◽  
Vol 12 (1) ◽  
pp. 63-88 ◽  
Author(s):  
Jimmy Or

Recently, there has been a lot of interest in building anthropomorphic robots. Research on humanoid robotics has focused on the control of manipulators and walking machines. The contributions of the torso towards ordinary movements (such as walking, dancing, attracting mates, and maintaining balance) have been neglected by almost all humanoid robotic researchers. We believe that the next generation of humanoid robots will incorporate a flexible spine in the torso. To meet the challenge of controlling this kind of high-degree-of-freedom robot, a new control architecture is necessary. Inspired by the rhythmic movements commonly exhibited in lamprey locomotion as well as belly dancing, we designed a controller for a simulated belly-dancing robot using the lamprey central pattern generator. Experimental results show that the proposed lamprey central pattern generator module could potentially generate plausible output patterns, which could be used for all the possible spine motions with minimized control parameters. For instance, in the case of planar spine motions, only three input parameters are required. Using our controller, the simulated robot is able to perform complex torso movements commonly seen in belly dancing as well. Our work suggests that the proposed controller can potentially be a suitable controller for a high-degree-of-freedom, flexible spine humanoid robot. Furthermore, it allows us to gain a better understanding of belly dancing by synthesis.


2011 ◽  
Vol 08 (03) ◽  
pp. 533-578 ◽  
Author(s):  
BRANISLAV BOROVAC ◽  
MILUTIN NIKOLIĆ ◽  
MIRKO RAKOVIĆ

It is expected that the humanoid robots of the near future will "live" and work in a common environment with humans, which imposes the requirement that their operative efficiency ought to be close to that of humans. The main prerequisite to achieve this is to ensure the robot's efficient motion, which is its ability to compensate for the ever-present disturbances. The work considers the different strategies of how to compensate for the large disturbances that jeopardize the robot's dynamic balance in a most direct way, as well as the requirements to be met in the control synthesis. The ways in which such compensation can be efficiently realized are proposed and then verified by simulation.


2011 ◽  
Vol 403-408 ◽  
pp. 4769-4776
Author(s):  
Nitin Kumar ◽  
Suraj Prakash Sahu ◽  
Jay Prakash Maurya ◽  
G.C. Nandi ◽  
Pavan Chakraborty

This paper describes the non Verbal communication method for developing a gesture-based system using Mimesis model. The proposed method is applicable to any hand gesture represented by a multi-dimensional signal. The entire work concentrates mainly on hand gestures recognition. It develops a way to communicate between Humans and the Humanoid Robots through gestural medium. The Mimesis is the technique of performing human gestures through imitation, recognition and generation. Different Gestures are being converted into code words through the use of code book. These code words are then converted into Proto-Symbols, these proto symbol then forms basis for training of the Humanoid robot. The recognition part is performed through a “distance vector”, a novel algorithm developed by us which is a combination of Euclidean distance and K-nearest neighbor. The generation part is done through the use of WEBOTS which include use of Humanoid robot HOAP 2 having 25 degrees of freedom. All the process of training, recognition and generation are simulated through MATLAB.


Author(s):  
Bryce Lee ◽  
Coleman Knabe ◽  
Viktor Orekhov ◽  
Dennis Hong

For a humanoid robot to have the versatility of humans, it needs to have similar motion capabilities. This paper presents the design of the hip joint of the Tactical Hazardous Operations Robot (THOR), which was created to perform disaster response duties in human-structured environments. The lower body of THOR was designed to have a similar range of motion to the average human. To accommodate the large range of motion requirements of the hip, it was divided into a parallel-actuated universal joint and a linkage-driven pin joint. The yaw and roll degrees of freedom are driven cooperatively by a pair of parallel series elastic linear actuators to provide high joint torques and low leg inertia. In yaw, the left hip can produce a peak of 115.02 [Nm] of torque with a range of motion of −20° to 45°. In roll, it can produce a peak of 174.72 [Nm] of torque with a range of motion of −30° to 45°. The pitch degree of freedom uses a Hoeken’s linkage mechanism to produce 100 [Nm] of torque with a range of motion of −120° to 30°.


2008 ◽  
Vol 5 (4) ◽  
pp. 195-211 ◽  
Author(s):  
Matthew Howard ◽  
Stefan Klanke ◽  
Michael Gienger ◽  
Christian Goerick ◽  
Sethu Vijayakumar

Movement generation that is consistent with observed or demonstrated behaviour is an efficient way to seed movement planning in complex, high-dimensional movement systems like humanoid robots. We present a method for learning potential-based policies from constrained motion data. In contrast to previous approaches to direct policy learning, our method can combine observations from a variety of contexts where different constraints are in force, to learn the underlying unconstrained policy in form of its potential function. This allows us to generalise and predict behaviour where novel constraints apply. We demonstrate our approach on systems of varying complexity, including kinematic data from the ASIMO humanoid robot with 22 degrees of freedom.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750010 ◽  
Author(s):  
Peng Yao ◽  
Tao Li ◽  
Minzhou Luo ◽  
Qingqing Zhang ◽  
Zhiying Tan

A new torso structure for a humanoid robot has been proposed. The structural characteristics and functions of human torso have been considered to gain inspirations for design purposes. The proposed torso structure consists of six revolute units divided into two basic categories connected in a serial chain mechanism. The proposed torso structure shows more advantages compared to traditional humanoid robots in terms of high degrees of freedom (DOFs), high stiffness, self-locking capabilities, as well as easy-to-control features. Bionic optimization design based on objective function method has been implemented on structural design for better motion performances. A 3D model has been elaborated and simulated in SolidWorks and ADAMS environments for structural design and kinematic simulation purposes, respectively. Simulation results show that the new bionic torso structure is able to well imitate movements of human torso.


2018 ◽  
Vol 6 (1) ◽  
pp. 124-136 ◽  
Author(s):  
Nur Khamdi ◽  
Mochamad Susantok ◽  
Antony Darmawan

One of the humanoid robots being developed in the field of sports is a soccer robot. A soccer robot is a humanoid robot that can perform activities such as playing football. And a variety method fall down of robot soccer such: falling down toward the front direction, side direction, and rear direction. This paper describes the most stands up methods of a soccer robot from its prone position. The proposed method requires only limited movement with degrees of freedom. The movement standing-up of soccer robot has been implemented on the real robot. Tests we performed showed that reliable standing-up from prone position is possible after a fall and such recovery procedures greatly improve the overall robustness of a Soccer Robot.


Author(s):  
Dr. S. V. Viraktamath

Abstract: Technology is ever evolving regardless of the current conditions. Emerging technologies have capability to change the world. Innovation is everywhere we look. One of the technologies that is emerging is Humanoid Robotics. This paper gives a review about influence of Humanoid Robot in human life also discuss the appearance of various robots. Artists, engineers and scientists have all been inspired by the human body and intellect. Humanoid Robotics is focused with the creation of robots that are inspired directly by human abilities. A humanoid robot is the one with a body that is designed to look like a human. Humanoid Robots imitate characteristics of human form and behaviour selectively. The robot could be used for practical purposes, such as interacting with human equipment and environments or for research purposes, such as investigating biped walking. Keywords: Biped Robot, Degrees of Freedom, Humanoid Robot, Human-Robot Interaction


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Jacopo Zenzeri ◽  
Dalia De Santis ◽  
Vishwanathan Mohan ◽  
Maura Casadio ◽  
Pietro Morasso

The goal of this paper is to analyze the static stability of a computational architecture, based on the Passive Motion Paradigm, for coordinating the redundant degrees of freedom of a humanoid robot during whole-body reaching movements in bipedal standing. The analysis is based on a simulation study that implements the Functional Reach Test, originally developed for assessing the danger of falling in elderly people. The study is carried out in the YARP environment that allows realistic simulations with the iCub humanoid robot.


Sign in / Sign up

Export Citation Format

Share Document