Generating New Space-Filling Test Instances for Continuous Black-Box Optimization

2020 ◽  
Vol 28 (3) ◽  
pp. 379-404
Author(s):  
Mario A. Muñoz ◽  
Kate Smith-Miles

This article presents a method to generate diverse and challenging new test instances for continuous black-box optimization. Each instance is represented as a feature vector of exploratory landscape analysis measures. By projecting the features into a two-dimensional instance space, the location of existing test instances can be visualized, and their similarities and differences revealed. New instances are generated through genetic programming which evolves functions with controllable characteristics. Convergence to selected target points in the instance space is used to drive the evolutionary process, such that the new instances span the entire space more comprehensively. We demonstrate the method by generating two-dimensional functions to visualize its success, and ten-dimensional functions to test its scalability. We show that the method can recreate existing test functions when target points are co-located with existing functions, and can generate new functions with entirely different characteristics when target points are located in empty regions of the instance space. Moreover, we test the effectiveness of three state-of-the-art algorithms on the new set of instances. The results demonstrate that the new set is not only more diverse than a well-known benchmark set, but also more challenging for the tested algorithms. Hence, the method opens up a new avenue for developing test instances with controllable characteristics, necessary to expose the strengths and weaknesses of algorithms, and drive algorithm development.

2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


1982 ◽  
Vol 14 (1-2) ◽  
pp. 241-261 ◽  
Author(s):  
P A Krenkel ◽  
R H French

The state-of-the-art of surface water impoundment modeling is examined from the viewpoints of both hydrodynamics and water quality. In the area of hydrodynamics current one dimensional integral energy and two dimensional models are discussed. In the area of water quality, the formulations used for various parameters are presented with a range of values for the associated rate coefficients.


2021 ◽  
Vol 15 (8) ◽  
pp. 898-911
Author(s):  
Yongqing Zhang ◽  
Jianrong Yan ◽  
Siyu Chen ◽  
Meiqin Gong ◽  
Dongrui Gao ◽  
...  

Rapid advances in biological research over recent years have significantly enriched biological and medical data resources. Deep learning-based techniques have been successfully utilized to process data in this field, and they have exhibited state-of-the-art performances even on high-dimensional, nonstructural, and black-box biological data. The aim of the current study is to provide an overview of the deep learning-based techniques used in biology and medicine and their state-of-the-art applications. In particular, we introduce the fundamentals of deep learning and then review the success of applying such methods to bioinformatics, biomedical imaging, biomedicine, and drug discovery. We also discuss the challenges and limitations of this field, and outline possible directions for further research.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


Author(s):  
H S Ismail ◽  
K K B Hon

The general two-dimensional cutting stock problem is concerned with the optimum layout and arrangement of two-dimensional shapes within the spatial constraints imposed by the cutting stock. The main objective is to maximize the utilization of the cutting stock material. This paper presents some of the results obtained from applying a combination of genetic algorithms and heuristic approaches to the nesting of dissimilar shapes. Genetic algorithms are stochastically based optimization approaches which mimic nature's evolutionary process in finding global optimal solutions in a large search space. The paper discusses the method by which the problem is defined and represented for analysis and introduces a number of new problem-specific genetic algorithm operators that aid in the rapid conversion to an optimum solution.


2021 ◽  
Vol 2021 (1) ◽  
pp. 209-228
Author(s):  
Yuantian Miao ◽  
Minhui Xue ◽  
Chao Chen ◽  
Lei Pan ◽  
Jun Zhang ◽  
...  

AbstractWith the rapid development of deep learning techniques, the popularity of voice services implemented on various Internet of Things (IoT) devices is ever increasing. In this paper, we examine user-level membership inference in the problem space of voice services, by designing an audio auditor to verify whether a specific user had unwillingly contributed audio used to train an automatic speech recognition (ASR) model under strict black-box access. With user representation of the input audio data and their corresponding translated text, our trained auditor is effective in user-level audit. We also observe that the auditor trained on specific data can be generalized well regardless of the ASR model architecture. We validate the auditor on ASR models trained with LSTM, RNNs, and GRU algorithms on two state-of-the-art pipelines, the hybrid ASR system and the end-to-end ASR system. Finally, we conduct a real-world trial of our auditor on iPhone Siri, achieving an overall accuracy exceeding 80%. We hope the methodology developed in this paper and findings can inform privacy advocates to overhaul IoT privacy.


Sign in / Sign up

Export Citation Format

Share Document