scholarly journals Memory Strength Effects in fMRI Studies: A Matter of Confidence

2011 ◽  
Vol 23 (9) ◽  
pp. 2324-2335 ◽  
Author(s):  
Greig I. de Zubicaray ◽  
Katie L. McMahon ◽  
Simon Dennis ◽  
John C. Dunn

To investigate potentially dissociable recognition memory responses in the hippocampus and perirhinal cortex, fMRI studies have often used confidence ratings as an index of memory strength. Confidence ratings, although correlated with memory strength, also reflect sources of variability, including task-irrelevant item effects and differences both within and across individuals in terms of applying decision criteria to separate weak from strong memories. We presented words one, two, or four times at study in each of two different conditions, focused and divided attention, and then conducted separate fMRI analyses of correct old responses on the basis of subjective confidence ratings or estimates from single- versus dual-process recognition memory models. Overall, the effect of focussing attention on spaced repetitions at study manifested as enhanced recognition memory performance. Confidence- versus model-based analyses revealed disparate patterns of hippocampal and perirhinal cortex activity at both study and test and both within and across hemispheres. The failure to observe equivalent patterns of activity indicates that fMRI signals associated with subjective confidence ratings reflect additional sources of variability. The results are consistent with predictions of single-process models of recognition memory.

Author(s):  
Georgios P. D. Argyropoulos ◽  
Carola Dell’Acqua ◽  
Emily Butler ◽  
Clare Loane ◽  
Adriana Roca-Fernandez ◽  
...  

AbstractA central debate in the systems neuroscience of memory concerns whether different medial temporal lobe (MTL) structures support different processes or material-types in recognition memory. We tested a rare patient (Patient MH) with a perirhinal lesion that appeared to spare the hippocampus, using two recognition memory paradigms, each run separately with faces, scenes and words. Replicating reports of a previous case, Patient MH showed impaired familiarity and preserved recollection, relative to controls, with no evidence for any effect of material-type. Moreover, when compared with other amnesic patients, who had hippocampal lesions that appeared to spare the perirhinal cortex, Patient MH showed greater impairment on familiarity and less on recollection, forming a double dissociation. However, when replacing this traditional, binary categorization of patients with a parametric analysis that related memory performance to continuous measures of brain damage across all patients, we found a different pattern: while hippocampal damage predicted recollection, it was parahippocampal instead of perirhinal (or entorhinal) cortex volume that predicted familiarity. Furthermore, there was no evidence that these brain-behavior relationships were moderated by material-type, nor by laterality of damage. Thus, while our data provide the most compelling support yet for dual-process models of recognition memory, in which recollection and familiarity depend on different MTL structures, they suggest that familiarity depends more strongly upon the parahippocampal rather than perirhinal cortex. More generally, our study reinforces the need to go beyond single-case and group studies, and instead examine continuous brain-behavior relationships across larger patient groups.


2017 ◽  
Author(s):  
Christoph T. Weidemann ◽  
Michael J. Kahana

Dual-process models of recognition memory typically assume that independent familiarity and recollection signals with distinct temporal profiles can each lead to recognition (enabling two routes to recognition), whereas single-process models posit a unitary “memory strength” signal. Using multivariate classifiers trained on spectral EEG features, we quantified neural evidence for recognition decisions as a function of time. Classifiers trained on a small portion of the decision period performed similarly to those also incorporating information from previous time points indicating that neural activity reflects an integrated evidence signal. We propose a single-route account of recognition memory that is compatible with contributions from familiarity and recollection signals, but relies on a unitary evidence signal that integrates all available evidence.


2015 ◽  
Vol 112 (46) ◽  
pp. 14378-14383 ◽  
Author(s):  
Maxwell B. Merkow ◽  
John F. Burke ◽  
Michael J. Kahana

Despite a substantial body of work comprising theoretical modeling, the effects of medial temporal lobe lesions, and electrophysiological signal analysis, the role of the hippocampus in recognition memory remains controversial. In particular, it is not known whether the hippocampus exclusively supports recollection or both recollection and familiarity—the two latent cognitive processes theorized to underlie recognition memory. We studied recognition memory in a large group of patients undergoing intracranial electroencephalographic (iEEG) monitoring for epilepsy. By measuring high-frequency activity (HFA)—a signal associated with precise spatiotemporal properties—we show that hippocampal activity during recognition predicted recognition memory performance and tracked both recollection and familiarity. Through the lens of dual-process models, these results indicate that the hippocampus supports both the recollection and familiarity processes.


2003 ◽  
Vol 90 (4) ◽  
pp. 2419-2427 ◽  
Author(s):  
Wendy S. Hadfield ◽  
Mark G. Baxter ◽  
Elisabeth A. Murray

The dorsal bank of the superior temporal sulcus (STSd) bears anatomical relations similar to those of perirhinal cortex, an area critical for visual recognition memory. To examine whether STSd makes a similar contribution to visual recognition memory, performance on visual delayed nonmatching-to-sample (DNMS) was assessed in rhesus monkeys with combined or separate ablations of the perirhinal cortex and STSd as well as in unoperated controls. Consistent with previous findings, ablations of perirhinal cortex produced deficits nearly as severe as that found after rhinal (i.e., entorhinal plus perirhinal) cortex lesions. However, combined lesions of perirhinal cortex and STSd produced a deficit no greater than that produced by perirhinal cortex ablation alone, and lesions of STSd alone were without effect on DNMS. We conclude that STSd is not critically involved in visual recognition memory.


2017 ◽  
Vol 29 (2) ◽  
pp. 322-336 ◽  
Author(s):  
Noam Brezis ◽  
Zohar Z. Bronfman ◽  
Galit Yovel ◽  
Yonatan Goshen-Gottstein

The quantity and nature of the processes underlying recognition memory remains an open question. A majority of behavioral, neuropsychological, and brain studies have suggested that recognition memory is supported by two dissociable processes: recollection and familiarity. It has been conversely argued, however, that recollection and familiarity map onto a single continuum of mnemonic strength and hence that recognition memory is mediated by a single process. Previous electrophysiological studies found marked dissociations between recollection and familiarity, which have been widely held as corroborating the dual-process account. However, it remains unknown whether a strength interpretation can likewise apply for these findings. Here we describe an ERP study, using a modified remember–know (RK) procedure, which allowed us to control for mnemonic strength. We find that ERPs of high and low mnemonic strength mimicked the electrophysiological distinction between R and K responses, in a lateral positive component (LPC), 500–1000 msec poststimulus onset. Critically, when contrasting strength with RK experience, by comparing weak R to strong K responses, the electrophysiological signal mapped onto strength, not onto subjective RK experience. Invoking the LPC as support for dual-process accounts may, therefore, be amiss.


1999 ◽  
Vol 22 (3) ◽  
pp. 465-466 ◽  
Author(s):  
Alan D. Pickering

Aggleton & Brown suggest that whereas familiarity is computed in perirhinal cortex, the hippocampus contributes to recollection. This account raises issues about the definition of amnesia, clarifies confusion about dual-process models of recognition, and sits comfortably with accounts of hippocampal function from outside the amnesia literature. The model can – and should – be tested. Some preliminary data suggest that it may need changes.


2012 ◽  
Vol 24 (2) ◽  
pp. 416-427 ◽  
Author(s):  
Erika Nyhus ◽  
Tim Curran

Dual process models suggest that recognition memory is supported by familiarity and recollection processes. Previous research administering amnesic drugs and measuring ERPs during recognition memory have provided evidence for separable neural correlates of familiarity and recollection. This study examined the effect of midazolam-induced amnesia on memory for details and the proposed ERP correlates of recognition. Midazolam or saline was administered while subjects studied oriented pictures of common objects. ERPs were recorded during a recognition test 1 day later. Subjects' discrimination of old and new pictures as well as orientation discrimination was worse when they were given midazolam instead of saline. As predicted, the parietal old/new effect was decreased with the administration of midazolam. However, weaker effects on FN400 old/new effects were also observed. These results provide converging pharmacological and electrophysiological evidence that midazolam primarily affects recollection as indexed by parietal ERP old/new effects and memory for orientation, while also exerting some weaker effects on familiarity as indexed by FN400 old/new effects.


2020 ◽  
Author(s):  
Zhemeng Wu ◽  
Martina Kavanova ◽  
Lydia Hickman ◽  
Fiona Lin ◽  
Mark J. Buckley

AbstractAccording to dual-process theory, recognition memory performance draws upon two processes, familiarity and recollection. The relative contribution to recognition memory are commonly distinguished in humans by analyzing receiver-operating-characteristics (ROC) curves; analogous methods are more complex and very rare in animals but fast familiarity and slow recollective-like processes (FF/SR) have been detected in non-human primates (NHPs) based on analyzing recognition error response time profiles. The relative utility of these methods to investigate familiarity and recollection/recollection-like processes across species is uncertain; indeed, even how comparable the FF/SR measures are across humans and NHPs remains unclear. Therefore in this study a broadly similar recognition memory task was exploited in both humans and NHPs to investigate the time course of the two recognition processes. We first show that the FF/SR dissociation exists in this task in human participants and then we demonstrate a similar profile in NHPs which suggests that FF/SR processes are comparable across species. We then verified, using ROC-derived indices for each time-bin in the FF/SR profile, that the ROC and FF/DR measures are related. Hence we argue that the FF/SR approach, procedurally easier in animals, can be used as a decent proxy to investigate these two recognition processes in future animal studies, important given that scant data exists as to the neural basis underlying recollection yet many of the most informative techniques primarily exist in animal models.


Sign in / Sign up

Export Citation Format

Share Document