scholarly journals Context Predicts Word Order Processing in Broca's Region

2014 ◽  
Vol 26 (12) ◽  
pp. 2762-2777 ◽  
Author(s):  
Line Burholt Kristensen ◽  
Elisabeth Engberg-Pedersen ◽  
Mikkel Wallentin

The function of the left inferior frontal gyrus (L-IFG) is highly disputed. A number of language processing studies have linked the region to the processing of syntactical structure. Still, there is little agreement when it comes to defining why linguistic structures differ in their effects on the L-IFG. In a number of languages, the processing of object-initial sentences affects the L-IFG more than the processing of subject-initial ones, but frequency and distribution differences may act as confounding variables. Syntactically complex structures (like the object-initial construction in Danish) are often less frequent and only viable in certain contexts. With this confound in mind, the L-IFG activation may be sensitive to other variables than a syntax manipulation on its own. The present fMRI study investigates the effect of a pragmatically appropriate context on the processing of subject-initial and object-initial clauses with the IFG as our ROI. We find that Danish object-initial clauses yield a higher BOLD response in L-IFG, but we also find an interaction between appropriateness of context and word order. This interaction overlaps with traditional syntax areas in the IFG. For object-initial clauses, the effect of an appropriate context is bigger than for subject-initial clauses. This result is supported by an acceptability study that shows that, given appropriate contexts, object-initial clauses are considered more appropriate than subject-initial clauses. The increased L-IFG activation for processing object-initial clauses without a supportive context may be interpreted as reflecting either reinterpretation or the recipients' failure to correctly predict word order from contextual cues.

2017 ◽  
Vol 29 (9) ◽  
pp. 1605-1620 ◽  
Author(s):  
Yun-Hsuan Yang ◽  
William D. Marslen-Wilson ◽  
Mirjana Bozic

Prominent neurobiological models of language follow the widely accepted assumption that language comprehension requires two principal mechanisms: a lexicon storing the sound-to-meaning mapping of words, primarily involving bilateral temporal regions, and a combinatorial processor for syntactically structured items, such as phrases and sentences, localized in a left-lateralized network linking left inferior frontal gyrus (LIFG) and posterior temporal areas. However, recent research showing that the processing of simple phrasal sequences may engage only bilateral temporal areas, together with the claims of distributional approaches to grammar, raise the question of whether frequent phrases are stored alongside individual words in temporal areas. In this fMRI study, we varied the frequency of words and of short and long phrases in English. If frequent phrases are indeed stored, then only less frequent items should generate selective left frontotemporal activation, because memory traces for such items would be weaker or not available in temporal cortex. Complementary univariate and multivariate analyses revealed that, overall, simple words (verbs) and long phrases engaged LIFG and temporal areas, whereas short phrases engaged bilateral temporal areas, suggesting that syntactic complexity is a key factor for LIFG activation. Although we found a robust frequency effect for words in temporal areas, no frequency effects were found for the two phrasal conditions. These findings support the conclusion that long and short phrases are analyzed, respectively, in the left frontal network and in a bilateral temporal network but are not retrieved from memory in the same way as simple words during spoken language comprehension.


Author(s):  
Yosef Grodzinsky

AbstractThe prospects of a cognitive neuroscience of syntax are considered with respect to functional neuroanatomy of two seemingly independent systems: Working Memory and syntactic representation and processing. It is proposed that these two systems are more closely related than previously supposed. In particular, it is claimed that a sentence with anaphoric dependencies involves several Working Memories, each entrusted with a different linguistic function. Components of Working Memory reside in the Left Inferior Frontal Gyrus, which is associated with Broca’s region. When lesioned, this area manifests comprehension disruptions in the ability to analyze intra-sentential dependencies, suggesting that Working Memory spans over syntactic computations. The unification of considerations regarding Working Memory with a purely syntactic approach to Broca’s regions leads to the conclusion that mechanisms that compute transformations—and no other syntactic relations—reside in this area.


2008 ◽  
Vol 1229 ◽  
pp. 167-178 ◽  
Author(s):  
Christopher M. Grindrod ◽  
Natalia Y. Bilenko ◽  
Emily B. Myers ◽  
Sheila E. Blumstein

2011 ◽  
Vol 22 (4) ◽  
pp. 263-277 ◽  
Author(s):  
Zheng Ye ◽  
Robert Kopyciok ◽  
Bahram Mohammadi ◽  
Ulrike M. Krämer ◽  
Claudia Brunnlieb ◽  
...  

Women show higher sensitivity than men to emotional and social cues and are therefore better in showing empathy with others and in deciphering other’s intentions and mental states. These sex differences have been linked to hormonal levels. However, it remains unclear how hormones modulate neural mechanisms underlying empathic processes. To assess effects of chronic hormonal treatment, functional magnetic resonance imaging was used in a group of female-to-male transsexuals before and during androgen therapy and a group of female and male controls while they watched pictures portraying emotionally negative or neutral situations (emotional content) involving one or two persons (social relation). Before therapy, the medial superior frontal gyrus and left inferior frontal gyrus showed greater activations for emotional than neutral stimuli. The posterior superior temporal sulcus showed greater activations for emotional vs. neutral stimuli and for social relations relative to pictures of single persons. Long-term androgen administration reduced the pSTS activity in response to emotional stimuli as well as its response to social relation. More importantly, the functional connectivity among frontal, temporal and striatal regions was weakened while the connectivity among limbic regions was strengthened as the androgen level increased during hormone therapy. This pattern of change was similar to the sex difference observed between female vs. male controls. Thus, making a brain more male by the application of androgens not only reduced the activity of a core neural hub but also markedly altered the organization of the brain network supporting emotional and social cognitive processes related to empathy and mentalizing.


2010 ◽  
Vol 22 (6) ◽  
pp. 1140-1157 ◽  
Author(s):  
Cristiano Crescentini ◽  
Tim Shallice ◽  
Emiliano Macaluso

Selection between competing responses and stimulus-response association strength is thought to affect performance during verb generation. However, the specific contribution of these two processes remains unclear. Here we used fMRI to investigate the role of selection and association within frontal and BG circuits that are known to be involved in verb production. Subjects were asked to generate verbs from nouns in conditions requiring either high or low selection, but with constant association strength, and in conditions of weak or strong association strength, now with constant selection demands. Furthermore, we examined the role of selection and association during noun generation from noun stimuli. We found that the midpart of the left inferior frontal gyrus was more active in conditions requiring high compared with low selection, with matched association strength. The same left inferior frontal region activated irrespective of verb or noun generation. Results of ROI analyses showed effects of association strength only for verb generation and specifically in the anterior/ventral part of the left inferior frontal gyrus. Moreover, the BG were more active when weakly associated verbs had to be produced relative to weakly associated nouns. These results highlight a functional segregation within the left inferior frontal gyrus for verb generation. More generally, the findings suggest that both factors of selection between competing responses and association strength are important during single-word production with the latter factor becoming particularly critical when task-irrelevant stimuli interfere with the current task (here nouns during verb production), triggering additional activation of the BG.


2006 ◽  
Vol 18 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Vinod Venkatraman ◽  
Soon Chun Siong ◽  
Michael W. L. Chee ◽  
Daniel Ansari

The role of language in performing numerical computations has been a topic of special interest in cognition. The “Triple Code Model” proposes the existence of a language-dependent verbal code involved in retrieving arithmetic facts related to addition and multiplication, and a language-independent analog magnitude code subserving tasks such as number comparison and estimation. Neuroimaging studies have shown dissociation between dependence of arithmetic computations involving exact and approximate processing on language-related circuits. However, a direct manipulation of language using different arithmetic tasks is necessary to assess the role of language in forming arithmetic representations and in solving problems in different languages. In the present study, 20 English-Chinese bilinguals were trained in two unfamiliar arithmetic tasks in one language and scanned using fMRI on the same problems in both languages (English and Chinese). For the exact “base-7 addition” task, language switching effects were found in the left inferior frontal gyrus (LIFG) and left inferior parietal lobule extending to the angular gyrus. In the approximate “percentage estimation” task, language switching effects were found predominantly in the bilateral posterior intraparietal sulcus and LIFG, slightly dorsal to the LIFG activation seen for the base-7 addition task. These results considerably strengthen the notion that exact processing relies on verbal and language-related networks, whereas approximate processing engages parietal circuits typically involved in magnitude-related processing.


2011 ◽  
Vol 23 (2) ◽  
pp. 404-413 ◽  
Author(s):  
Paul Wright ◽  
Billi Randall ◽  
William D. Marslen-Wilson ◽  
Lorraine K. Tyler

The left inferior frontal gyrus (LIFG) has long been claimed to play a key role in language function. However, there is considerable controversy as to whether regions within LIFG have specific linguistic or domain-general functions. Using fMRI, we contrasted linguistic and task-related effects by presenting simple and morphologically complex words while subjects performed a lexical decision (LD) task or passively listened (PL) without making an overt response. LIFG Brodmann's area 47 showed greater activation in LD than PL, whereas LIFG Brodmann's area 44 showed greater activation to complex compared with simple words in both tasks. These results dissociate task-driven and obligatory language processing in LIFG and suggest that PL is the paradigm of choice for probing the core aspects of the neural language system.


2015 ◽  
Vol 19 (3) ◽  
pp. 471-488 ◽  
Author(s):  
EMILY L. CODERRE ◽  
JASON F. SMITH ◽  
WALTER J.B. VAN HEUVEN ◽  
BARRY HORWITZ

The need to control multiple languages is thought to require domain-general executive control in bilinguals such that the executive control and language systems become interdependent. However, there has been no systematic investigation into how and where executive control and language processes overlap in the bilingual brain. If the concurrent recruitment of executive control during bilingual language processing is domain-general and extends to non-linguistic control, we hypothesize that regions commonly involved in language processing, linguistic control, and non-linguistic control may be selectively altered in bilinguals compared to monolinguals. A conjunction of functional magnetic resonance imaging (fMRI) data from a flanker task with linguistic and non-linguistic distractors and a semantic categorization task showed functional overlap in the left inferior frontal gyrus (LIFG) in bilinguals, whereas no overlap occurred in monolinguals. This research therefore identifies a neural locus of functional overlap of language and executive control in the bilingual brain.


Sign in / Sign up

Export Citation Format

Share Document