Increased Neural Strength and Reliability to Audiovisual Stimuli at the Boundary of Peripersonal Space

2019 ◽  
Vol 31 (8) ◽  
pp. 1155-1172 ◽  
Author(s):  
Jean-Paul Noel ◽  
Andrea Serino ◽  
Mark T. Wallace

The actionable space surrounding the body, referred to as peripersonal space (PPS), has been the subject of significant interest of late within the broader framework of embodied cognition. Neurophysiological and neuroimaging studies have shown the representation of PPS to be built from visuotactile and audiotactile neurons within a frontoparietal network and whose activity is modulated by the presence of stimuli in proximity to the body. In contrast to single-unit and fMRI studies, an area of inquiry that has received little attention is the EEG characterization associated with PPS processing. Furthermore, although PPS is encoded by multisensory neurons, to date there has been no EEG study systematically examining neural responses to unisensory and multisensory stimuli, as these are presented outside, near, and within the boundary of PPS. Similarly, it remains poorly understood whether multisensory integration is generally more likely at certain spatial locations (e.g., near the body) or whether the cross-modal tactile facilitation that occurs within PPS is simply due to a reduction in the distance between sensory stimuli when close to the body and in line with the spatial principle of multisensory integration. In the current study, to examine the neural dynamics of multisensory processing within and beyond the PPS boundary, we present auditory, visual, and audiovisual stimuli at various distances relative to participants' reaching limit—an approximation of PPS—while recording continuous high-density EEG. We question whether multisensory (vs. unisensory) processing varies as a function of stimulus–observer distance. Results demonstrate a significant increase of global field power (i.e., overall strength of response across the entire electrode montage) for stimuli presented at the PPS boundary—an increase that is largest under multisensory (i.e., audiovisual) conditions. Source localization of the major contributors to this global field power difference suggests neural generators in the intraparietal sulcus and insular cortex, hubs for visuotactile and audiotactile PPS processing. Furthermore, when neural dynamics are examined in more detail, changes in the reliability of evoked potentials in centroparietal electrodes are predictive on a subject-by-subject basis of the later changes in estimated current strength at the intraparietal sulcus linked to stimulus proximity to the PPS boundary. Together, these results provide a previously unrealized view into the neural dynamics and temporal code associated with the encoding of nontactile multisensory around the PPS boundary.

2016 ◽  
Author(s):  
Roy Salomon ◽  
Jean-Paul Noel ◽  
Marta Łukowska ◽  
Nathan Faivre ◽  
Thomas Metzinger ◽  
...  

AbstractRecent studies have highlighted the role of multisensory integration as a key mechanism of self-consciousness. In particular, integration of bodily signals within the peripersonal space (PPS) underlies the experience of the self in a body we own (self-identification) and that is experienced as occupying a specific location in space (self-location), two main components of bodily self-consciousness (BSC). Experiments investigating the effects of multisensory integration on BSC have typically employed supra-threshold sensory stimuli, neglecting the role of unconscious sensory signals in BSC, as tested in other consciousness research. Here, we used psychophysical techniques to test whether multisensory integration of bodily stimuli underlying BSC may also occur for multisensory inputs presented below the threshold of conscious perception. Our results indicate that visual stimuli rendered invisible (through continuous flash suppression) boost processing of tactile stimuli on the body (Exp. 1), and enhance the perception of near-threshold tactile stimuli (Exp. 2), only once they entered peripersonal space. We then employed unconscious multisensory mechanisms to manipulate BSC. Participants were presented with tactile stimulation on their body and with visual stimuli on a virtual body, seen at a distance, which were either visible or rendered invisible. We report that if visuo-tactile stimulation was synchronized, participants self-identified with the virtual body (Exp. 3), and shifted their self-location toward the virtual body (Exp.4), even if visual stimuli were fully invisible. Our results indicate that multisensory inputs, even outside of awareness, are integrated and affect the phenomenological content of self-consciousness, grounding BSC firmly in the field of psychophysical consciousness studies.


2020 ◽  
Vol 14 ◽  
Author(s):  
Daniela Rabellino ◽  
Paul A. Frewen ◽  
Margaret C. McKinnon ◽  
Ruth A. Lanius

Peripersonal space (PPS) is defined as the space surrounding the body where we can reach or be reached by external entities, including objects or other individuals. PPS is an essential component of bodily self-consciousness that allows us to perform actions in the world (e.g., grasping and manipulating objects) and protect our body while interacting with the surrounding environment. Multisensory processing plays a critical role in PPS representation, facilitating not only to situate ourselves in space but also assisting in the localization of external entities at a close distance from our bodies. Such abilities appear especially crucial when an external entity (a sound, an object, or a person) is approaching us, thereby allowing the assessment of the salience of a potential incoming threat. Accordingly, PPS represents a key aspect of social cognitive processes operational when we interact with other people (for example, in a dynamic dyad). The underpinnings of PPS have been investigated largely in human models and in animals and include the operation of dedicated multimodal neurons (neurons that respond specifically to co-occurring stimuli from different perceptive modalities, e.g., auditory and tactile stimuli) within brain regions involved in sensorimotor processing (ventral intraparietal sulcus, ventral premotor cortex), interoception (insula), and visual recognition (lateral occipital cortex). Although the defensive role of the PPS has been observed in psychopathology (e.g., in phobias) the relation between PPS and altered states of bodily consciousness remains largely unexplored. Specifically, PPS representation in trauma-related disorders, where altered states of consciousness can involve dissociation from the body and its surroundings, have not been investigated. Accordingly, we review here: (1) the behavioral and neurobiological literature surrounding trauma-related disorders and its relevance to PPS; and (2) outline future research directions aimed at examining altered states of bodily self-consciousness in trauma related-disorders.


2019 ◽  
Vol 30 (10) ◽  
pp. 1522-1532 ◽  
Author(s):  
Tomohiro Amemiya ◽  
Yasushi Ikei ◽  
Michiteru Kitazaki

The limited space immediately surrounding our body, known as peripersonal space (PPS), has been investigated by focusing on changes in the multisensory processing of audio-tactile stimuli occurring within or outside the PPS. Some studies have reported that the PPS representation is extended by body actions such as walking. However, it is unclear whether the PPS changes when a walking-like sensation is induced but the body neither moves nor is forced to move. Here, we show that a rhythmic pattern consisting of walking-sound vibrations applied to the soles of the feet, but not the forearms, boosted tactile processing when looming sounds were located near the body. The findings suggest that an extension of the PPS representation can be triggered by stimulating the soles in the absence of body action, which may automatically drive a motor program for walking, leading to a change in spatial cognition around the body.


2018 ◽  
Author(s):  
Fosco Bernasconi ◽  
Jean-Paul Noel ◽  
Hyeong Dong Park ◽  
Nathan Faivre ◽  
Margitta Seeck ◽  
...  

AbstractInteractions with the environment happen by the medium of the body within one’s peripersonal space (PPS) - the space surrounding the body. Studies in monkey and humans have highlighted a multisensory distributed cortical network representing the PPS. However, electrophysiological evidence for a multisensory encoding of PPS in humans is lacking. Here, we recorded for the first time intracranial electroencephalography (iEEG) in humans while administering tactile stimulation (T) on the trunk, approaching auditory stimuli (A), and the combination of the two (AT). To map PPS, in AT trials, tactile stimulation was delivered when the sound was far, at an intermediate location, or close to the body. We first identified electrodes showing AT multisensory integration (i.e., AT vs. A+T): 19% of the recording electrodes. Among those electrodes, we identified those showing a PPS effect (30% of the AT electrodes), i.e., a modulation of the evoked response to AT stimulation as a function of the distance between the sound and body. For most sites, AT multisensory integration and PPS effects had similar spatiotemporal characteristics, with an early response (~50ms) in the insular cortex, and later responses (~200ms) in pre‐ and post-central gyri. Superior temporal cortex showed a different response pattern with AT multisensory integration at ~100ms without PPS effect. These results, representing the first iEEG delineation of PPS processing in humans, show that PPS processing happens at neural sites where also multisensory integration occurs and at similar time periods, suggesting that PPS representation (around the trunk) is based on a spatial modulation of multisensory integration.


2020 ◽  
Vol 82 (7) ◽  
pp. 3490-3506
Author(s):  
Jonathan Tong ◽  
Lux Li ◽  
Patrick Bruns ◽  
Brigitte Röder

Abstract According to the Bayesian framework of multisensory integration, audiovisual stimuli associated with a stronger prior belief that they share a common cause (i.e., causal prior) are predicted to result in a greater degree of perceptual binding and therefore greater audiovisual integration. In the present psychophysical study, we systematically manipulated the causal prior while keeping sensory evidence constant. We paired auditory and visual stimuli during an association phase to be spatiotemporally either congruent or incongruent, with the goal of driving the causal prior in opposite directions for different audiovisual pairs. Following this association phase, every pairwise combination of the auditory and visual stimuli was tested in a typical ventriloquism-effect (VE) paradigm. The size of the VE (i.e., the shift of auditory localization towards the spatially discrepant visual stimulus) indicated the degree of multisensory integration. Results showed that exposure to an audiovisual pairing as spatiotemporally congruent compared to incongruent resulted in a larger subsequent VE (Experiment 1). This effect was further confirmed in a second VE paradigm, where the congruent and the incongruent visual stimuli flanked the auditory stimulus, and a VE in the direction of the congruent visual stimulus was shown (Experiment 2). Since the unisensory reliabilities for the auditory or visual components did not change after the association phase, the observed effects are likely due to changes in multisensory binding by association learning. As suggested by Bayesian theories of multisensory processing, our findings support the existence of crossmodal causal priors that are flexibly shaped by experience in a changing world.


Author(s):  
Samuel B. Hunley ◽  
Arwen M. Marker ◽  
Stella F. Lourenco

Abstract. The current study investigated individual differences in the flexibility of peripersonal space (i.e., representational space near the body), specifically in relation to trait claustrophobic fear (i.e., fear of suffocating or being physically restricted). Participants completed a line bisection task with either a laser pointer (Laser condition), allowing for a baseline measure of the size of one’s peripersonal space, or a stick (Stick condition), which produces expansion of one’s peripersonal space. Our results revealed that individuals high in claustrophobic fear had larger peripersonal spaces than those lower in claustrophobic fear, replicating previous research. We also found that, whereas individuals low in claustrophobic fear demonstrated the expected expansion of peripersonal space in the Stick condition, individuals high in claustrophobic fear showed less expansion, suggesting decreased flexibility. We discuss these findings in relation to the defensive function of peripersonal space and reduced attentional flexibility associated with trait anxieties.


2021 ◽  
pp. 1-12
Author(s):  
Una Smailovic ◽  
Ingemar Kåreholt ◽  
Thomas Koenig ◽  
Nicholas J. Ashton ◽  
Bengt Winblad ◽  
...  

Background: Cerebrospinal fluid (CSF) neurogranin and quantitative electroencephalography (qEEG) are potential molecular and functional markers of synaptic pathology in Alzheimer’s disease (AD). Synaptic markers have emerged as candidate prognostic indicators of AD since synaptic degeneration was shown to be an early event and the best correlate of cognitive deficits in patients along the disease continuum. Objective: The present study investigated the association between CSF neurogranin and qEEG measures as well as their potential to predict clinical deterioration in mild cognitive impairment (MCI) patients. Methods: Patients diagnosed with MCI (n = 99) underwent CSF conventional AD biomarkers and neurogranin analysis and resting-state EEG recordings. The study population was further stratified into stable (n = 41) and progressive MCI (n = 31), based on the progression to AD dementia during two years follow-up. qEEG analysis included computation of global field power and global field synchronization in four conventional frequency bands. Results: CSF neurogranin levels were associated with theta power and synchronization in the progressive MCI group. CSF neurogranin and qEEG measures were significant predictors of progression to AD dementia, independent of baseline amyloid status in MCI patients. A combination of CSF neurogranin with global EEG power in theta and global EEG synchronization in beta band exhibited the highest classification accuracy as compared to either of these markers alone. Conclusion: qEEG and CSF neurogranin are independent predictors of progression to AD dementia in MCI patients. Molecular and neurophysiological synaptic markers may have additive value in a multimodal diagnostic and prognostic approach to dementia.


Author(s):  
Itsuki Yamashita ◽  
Kentaro Katahira ◽  
Yasuhiko Igarashi ◽  
Kazuo Okanoya ◽  
Masato Okada

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Hide ◽  
Y. Ito ◽  
N. Kuroda ◽  
M. Kanda ◽  
W. Teramoto

AbstractThis study investigates how the multisensory integration in body perception changes with increasing age, and whether it is associated with older adults’ risk of falling. For this, the rubber hand illusion (RHI) and rubber foot illusion (RFI) were used. Twenty-eight community-dwelling older adults and 25 university students were recruited. They viewed a rubber hand or foot that was stimulated in synchrony or asynchrony with their own hidden hand or foot. The illusion was assessed by using a questionnaire, and measuring the proprioceptive drift and latency. The Timed Up and Go Test was used to classify the older adults into lower and higher fall-risk groups. No difference was observed in the RHI between the younger and older adults. However, several differences were observed in the RFI. Specifically, the older adults with a lower fall-risk hardly experienced the illusion, whereas those with a higher fall-risk experienced it with a shorter latency and no weaker than the younger adults. These results suggest that in older adults, the mechanism of multisensory integration for constructing body perception can change depending on the stimulated body parts, and that the risk of falling is associated with multisensory integration.


1998 ◽  
Vol 80 (2) ◽  
pp. 1006-1010 ◽  
Author(s):  
Mark T. Wallace ◽  
M. Alex Meredith ◽  
Barry E. Stein

Wallace, Mark T., M. Alex Meredith, and Barry E. Stein. Multisensory integration in the superior colliculus of the alert cat. J. Neurophysiol. 80: 1006–1010, 1998. The modality convergence patterns, sensory response properties, and principles governing multisensory integration in the superior colliculus (SC) of the alert cat were found to have fundamental similarities to those in anesthetized animals. Of particular interest was the observation that, in a manner indistinguishable from the anesthetized animal, combinations of two different sensory stimuli significantly enhanced the responses of SC neurons above those evoked by either unimodal stimulus. These observations are consistent with the speculation that there is a functional link among multisensory integration in individual SC neurons and cross-modality attentive and orientation behaviors.


Sign in / Sign up

Export Citation Format

Share Document