scholarly journals Multisensory integration involved in the body perception of community-dwelling older adults

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Hide ◽  
Y. Ito ◽  
N. Kuroda ◽  
M. Kanda ◽  
W. Teramoto

AbstractThis study investigates how the multisensory integration in body perception changes with increasing age, and whether it is associated with older adults’ risk of falling. For this, the rubber hand illusion (RHI) and rubber foot illusion (RFI) were used. Twenty-eight community-dwelling older adults and 25 university students were recruited. They viewed a rubber hand or foot that was stimulated in synchrony or asynchrony with their own hidden hand or foot. The illusion was assessed by using a questionnaire, and measuring the proprioceptive drift and latency. The Timed Up and Go Test was used to classify the older adults into lower and higher fall-risk groups. No difference was observed in the RHI between the younger and older adults. However, several differences were observed in the RFI. Specifically, the older adults with a lower fall-risk hardly experienced the illusion, whereas those with a higher fall-risk experienced it with a shorter latency and no weaker than the younger adults. These results suggest that in older adults, the mechanism of multisensory integration for constructing body perception can change depending on the stimulated body parts, and that the risk of falling is associated with multisensory integration.

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 622 ◽  
Author(s):  
Thomas Gerhardy ◽  
Katharina Gordt ◽  
Carl-Philipp Jansen ◽  
Michael Schwenk

Background: Decreasing performance of the sensory systems’ for balance control, including the visual, somatosensory and vestibular system, is associated with increased fall risk in older adults. A smartphone-based version of the Timed Up-and-Go (mTUG) may allow screening sensory balance impairments through mTUG subphases. The association between mTUG subphases and sensory system performance is examined. Methods: Functional mobility of forty-one community-dwelling older adults (>55 years) was measured using a validated mTUG. Duration of mTUG and its subphases ‘sit-to-walk’, ‘walking’, ‘turning’, ‘turn-to-sit’ and ‘sit-down’ were extracted. Sensory systems’ performance was quantified by validated posturography during standing (30 s) under different conditions. Visual, somatosensory and vestibular control ratios (CR) were calculated from posturography and correlated with mTUG subphases. Results: Vestibular CR correlated with mTUG total time (r = 0.54; p < 0.01), subphases ‘walking’ (r = 0.56; p < 0.01), and ‘turning’ (r = 0.43; p = 0.01). Somatosensory CR correlated with mTUG total time (r = 0.52; p = 0.01), subphases ‘walking’ (r = 0.52; p < 0.01) and ‘turning’ (r = 0.44; p < 0.01). Conclusions: Supporting the proposed approach, results indicate an association between specific mTUG subphases and sensory system performance. mTUG subphases ‘walking’ and ‘turning’ may allow screening for sensory system deterioration. This is a first step towards an objective, detailed and expeditious balance control assessment, however needing validation in a larger study.


2020 ◽  
Author(s):  
Andreas Skiadopoulos ◽  
Nick Stergiou

Abstract BackgroundAging increases fall risk and alters gait mechanics and control. Our previous work has identified sideways walking as a potential training regimen to decrease fall risk by improving frontal plane control in older adults’ gait. The purposes of this pilot study were to test the feasibility of sideways walking as an exercise intervention and to explore its preliminary effects on risk-of-falling related outcomes.MethodsWe conducted a 6-week single-arm intervention pilot study. Participants were community-dwelling older adults ≥ 65 years old with walking ability. Key exclusion criteria were neuromusculoskeletal and cardiovascular disorders that affect gait. Individualized sideways walking intervention carried out under close supervision in a 200 m indoor walking track (3 days∙week− 1). Recruitment and retention capability, safety, and fidelity of intervention delivery were recorded. We also collected (open-label) walking speed, gait variability, self-reported and performance-based functional measures to assess participants’ risk-of-falling at baseline and post-intervention: immediate, and 6 weeks after the completion of the intervention.ResultsOver a 7-month period, 42 individuals expressed interest, 21 assessed for eligibility (21/42), and 15 consented to participate (15/21). Most of the potential participants were reluctant to commit to a 6-week intervention. Desired recruitment rate was achieved after revising the recruitment strategy. One participant dropped out (1/15). Remaining participants demonstrated excellent adherence to the protocol. Participants improved on most outcomes and the effects remained at follow-up. No serious adverse events were recorded during the intervention.ConclusionOur 6-week sideways walking training was feasible to deliver and demonstrated strong potential as an exercise intervention to improve risk-of-falling outcomes in community-dwelling older adults. In a future trial, alternative clinical tools should be considered to minimize the presence of ceiling/floor effects. A future large trial is needed to confirm sideways walking as a fall prevention intervention.Trial registrationClinicalTrials.gov identifier: NCT04505527. Retrospectively registered 10 August 2020.Trial fundingCenter for Research in Human Movement Variability, National Institutes for Health, University of Nebraska Collaboration Initiative.


2021 ◽  
Vol 30 (1) ◽  
pp. 78-84
Author(s):  
Nathan F. Johnson ◽  
Chloe Hutchinson ◽  
Kaitlyn Hargett ◽  
Kyle Kosik ◽  
Phillip Gribble

Context: Falls and loss of autonomy are often attributed in large part to musculoskeletal impairments in later adulthood. Age-related declines in flexibility contribute to late adulthood musculoskeletal impairment. The novel sitting-rising test has been proposed to be a quick, effective screening of musculoskeletal fitness, fall risk, and all-cause mortality in older adults. The timed up and go and 5 times sit-to-stand tests are two of the 3 most evidence-supported performance measures to assess fall risk. Objective: This study aimed to determine if 5 weeks of flexibility training could increase sitting-rising test, timed up and go, and 5 times sit-to-stand scores in community-dwelling older adults. Participants: Forty-seven adults aged 60 years and older (mean age = 66.7 y, SD = 4.1) participated in this study. Participants completed a static stretching protocol consisting of 3 weekly 1-hour stretching sessions. Results: The protocol improved flexibility as seen in sit-and-reach scores and improved scores on all outcome variables. Specifically, there was a significant increase in sitting-rising test scores from preintervention (M = 7.45, SD = 1.45) to postintervention (M = 8.04, SD = 1.36), t(42) = −5.21, P < .001. Timed up and go scores demonstrated a significant decrease from preintervention (M = 8.85, SD = 1.32) to postintervention (M = 8.20, SD = 1.35), t(46) = 5.10, P < .001. Five times sit-to-stand scores demonstrated a significant decrease from preintervention (M = 12.57, SD = 2.68) to postintervention (M = 10.46, SD = 2.06), t(46) = 6.62, P < .001. Finally, significant increases in sit-and-reach scores were associated with improved functional performance (r = −.308, P = .03). Conclusion: Findings suggest that flexibility training can be an effective mode of low-level exercise to improve functional outcomes. Static stretching may help to improve musculoskeletal health, promote autonomy, and decrease mortality in community-dwelling older adults.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Andreas Skiadopoulos ◽  
Nick Stergiou

Abstract Background Aging increases fall risk and alters gait mechanics and control. Our previous work has identified sideways walking as a potential training regimen to decrease fall risk by improving frontal plane control in older adults’ gait. The purposes of this pilot study were to test the feasibility of sideways walking as an exercise intervention and to explore its preliminary effects on risk-of-falling related outcomes. Methods We conducted a 6-week single-arm intervention pilot study. Participants were community-dwelling older adults ≥ 65 years old with walking ability. Key exclusion criteria were neuromusculoskeletal and cardiovascular disorders that affect gait. Because initial recruitment rate through University of Nebraska at Omaha and Omaha community was slower than expected (3 participants∙week− 1), we expanded the recruitment pool through the Mind & Brain Health Labs registry of the University of Nebraska Medical Center. Individualized sideways walking intervention carried out under close supervision in a 200 m indoor walking track (3 days∙week− 1). Recruitment and retention capability, safety, and fidelity of intervention delivery were recorded. We also collected (open-label) walking speed, gait variability, self-reported and performance-based functional measures to assess participants’ risk-of-falling at baseline and post-intervention: immediate, and 6 weeks after the completion of the intervention. Results Over a 7-month period, 42 individuals expressed interest, 21 assessed for eligibility (21/42), and 15 consented to participate (15/21). Most of the potential participants were reluctant to commit to a 6-week intervention. Desired recruitment rate was achieved after revising the recruitment strategy. One participant dropped out (1/15). Remaining participants demonstrated excellent adherence to the protocol. Participants improved on most outcomes and the effects remained at follow-up. No serious adverse events were recorded during the intervention. Conclusions Our 6-week sideways walking training was feasible to deliver and demonstrated strong potential as an exercise intervention to improve risk-of-falling outcomes in community-dwelling older adults. In a future trial, alternative clinical tools should be considered to minimize the presence of ceiling/floor effects. A future large trial is needed to confirm sideways walking as a fall prevention intervention. Trial registration ClinicalTrials.gov identifier: NCT04505527. Retrospectively registered 10 August 2020.


2021 ◽  
Vol 79 (1) ◽  
Author(s):  
Hsin-Hung Ho ◽  
I-Yao Fang ◽  
Yi-Chien Yu ◽  
Yi-Ping Huang ◽  
I-Ling Kuo ◽  
...  

Abstract Background Falls among older adults are a serious public health problem. Many studies indicate that positive functional fitness performance decreases the risk of falls. A limited amount of previous study has investigated the association between broad functional fitness and the fall risk. This study examines the associations between functional fitness and the risk of falling among community-dwelling older adults. Methods Three waves of cross-sectional data were collected from 2017 to 2019 in Taipei City, Taiwan. Six hundred sixty-five participants aged ≥65 years were randomly recruited from 12 districts of Taipei. Eight functional fitness tests (i.e., back scratch, chair-sit and-reach, 8-ft up-and-go, 30-s sit-to-stand, 30-s arm curl, 30-s single-leg stance, 2-min step, and hand grip strength tests) were performed to record the physical performance of older subjects. A Chinese version of the fall-risk questionnaire (FRQ) was used to calculate the fall risk scores. Linear regression and logistic regression were utilized to estimate the relationships of each functional fitness and fall risk. Result The results showed that 37.45% of older adults had a high risk of falling. It was found for each functional fitness that performance was linearly associated with the risk of falling. Moreover, older adults with low-performance levels in all functional fitness except back-scratching were more likely to have a higher risk of falling. Conclusions Our study indicated that functional fitness performance appears to provide valid predictive guidance for reducing the risk of falling among the older population.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 407
Author(s):  
Laetitia Lengelé ◽  
Olivier Bruyère ◽  
Charlotte Beaudart ◽  
Jean-Yves Reginster ◽  
Médéa Locquet

This study aimed to assess the impact of malnutrition on the 5-year evolution of physical performance, muscle mass and muscle strength in participants from the SarcoPhAge cohort, consisting of community-dwelling older adults. The malnutrition status was assessed at baseline (T0) according to the “Global Leadership Initiatives on Malnutrition” (GLIM) criteria, and the muscle parameters were evaluated both at T0 and after five years of follow-up (T5). Lean mass, muscle strength and physical performance were assessed using dual X-ray absorptiometry, handgrip dynamometry, the short physical performance battery test and the timed up and go test, respectively. Differences in muscle outcomes according to nutritional status were tested using Student’s t-test. The association between malnutrition and the relative 5-year change in the muscle parameters was tested using multiple linear regressions adjusted for several covariates. A total of 411 participants (mean age of 72.3 ± 6.1 years, 56% women) were included. Of them, 96 individuals (23%) were diagnosed with malnutrition at baseline. Their muscle parameters were significantly lower than those of the well-nourished patients both at baseline and after five years of follow-up (all p-values < 0.05), except for muscle strength in women at T5, which was not significantly lower in the presence of malnutrition. However, the 5-year changes in muscle parameters of malnourished individuals were not significantly different than those of well-nourished individuals (all p-values > 0.05).


2018 ◽  
Author(s):  
Yang Yang ◽  
John P Hirdes ◽  
Joel A Dubin ◽  
Joon Lee

BACKGROUND  Little is known about whether off-the-shelf wearable sensor data can contribute to fall risk classification or complement clinical assessment tools such as the Resident Assessment Instrument-Home Care (RAI-HC). OBJECTIVE  This study aimed to (1) investigate the similarities and differences in physical activity (PA), heart rate, and night sleep in a sample of community-dwelling older adults with varying fall histories using a smart wrist-worn device and (2) create and evaluate fall risk classification models based on (i) wearable data, (ii) the RAI-HC, and (iii) the combination of wearable and RAI-HC data. METHODS  A prospective, observational study was conducted among 3 faller groups (G0, G1, G2+) based on the number of previous falls (0, 1, ≥2 falls) in a sample of older community-dwelling adults. Each participant was requested to wear a smart wristband for 7 consecutive days while carrying out day-to-day activities in their normal lives. The wearable and RAI-HC assessment data were analyzed and utilized to create fall risk classification models, with 3 supervised machine learning algorithms: logistic regression, decision tree, and random forest (RF). RESULTS  Of 40 participants aged 65 to 93 years, 16 (40%) had no previous falls, whereas 8 (20%) and 16 (40%) had experienced 1 and multiple (≥2) falls, respectively. Level of PA as measured by average daily steps was significantly different between groups (P=.04). In the 3 faller group classification, RF achieved the best accuracy of 83.8% using both wearable and RAI-HC data, which is 13.5% higher than that of using the RAI-HC data only and 18.9% higher than that of using wearable data exclusively. In discriminating between {G0+G1} and G2+, RF achieved the best area under the receiver operating characteristic curve of 0.894 (overall accuracy of 89.2%) based on wearable and RAI-HC data. Discrimination between G0 and {G1+G2+} did not result in better classification performance than that between {G0+G1} and G2+. CONCLUSIONS  Both wearable data and the RAI-HC assessment can contribute to fall risk classification. All the classification models revealed that RAI-HC outperforms wearable data, and the best performance was achieved with the combination of 2 datasets. Future studies in fall risk assessment should consider using wearable technologies to supplement resident assessment instruments.


Author(s):  
Heeeun Jung ◽  
Miji Kim ◽  
Yunhwan Lee ◽  
Chang Won Won

Frailty is defined as a state of increased vulnerability to stressors, and it predicts the disability and mortality in the older population. This study aimed to investigate standardized prevalence and multidimensional risk factors associated with frailty among the Korean community-dwelling older adults. We analyzed the baseline data of 2,907 adults aged 70&ndash;84 years (mean age 75.8&plusmn;3.9 years, 57.8% women) in the Korean Frailty and Aging Cohort Study. The Fried frailty phenotype was used to define frailty. Analyzed data included sociodemographic, physical, physical function, biological, lifestyle, health condition, medical condition, psychological, and social domains. Data were standardized using the national standard population composition ratio based on the Korean Population and Housing Census. The standardized prevalence of frailty and pre-frailty was 7.9% (95% confidence interval [CI] 6.8&ndash;8.9%) and 57.2% (95% CI 45.1&ndash;48.8%), respectively. The following 14 risk factors had a significant association with frailty: at risk of malnutrition, sarcopenia, severe mobility limitation, poor social capital, rural dwellers, depressive, poor self-perceived health, polypharmacy, elevated high-sensitivity C-reactive protein, elevated glycosylated hemoglobin, low 25-hydroxy vitamin D level, longer timed up and go, and low short physical performance battery score (p&lt;0.05). Physico-nutritional, psychological, sociodemographic, and medical factors are strongly associated with frailty.


Sign in / Sign up

Export Citation Format

Share Document