scholarly journals Semantic and Physical Properties of Peripheral Vision Are Used for Scene Categorization in Central Vision

2021 ◽  
Vol 33 (5) ◽  
pp. 799-813
Author(s):  
Carole Peyrin ◽  
Alexia Roux-Sibilon ◽  
Audrey Trouilloud ◽  
Sarah Khazaz ◽  
Malena Joly ◽  
...  

Abstract Theories of visual recognition postulate that our ability to understand our visual environment at a glance is based on the extraction of the gist of the visual scene, a first global and rudimentary visual representation. Gist perception would be based on the rapid analysis of low spatial frequencies in the visual signal and would allow a coarse categorization of the scene. We aimed to study whether the low spatial resolution information available in peripheral vision could modulate the processing of visual information presented in central vision. We combined behavioral measures (Experiments 1 and 2) and fMRI measures (Experiment 2). Participants categorized a scene presented in central vision (artificial vs. natural categories) while ignoring another scene, either semantically congruent or incongruent, presented in peripheral vision. The two scenes could either share the same physical properties (similar amplitude spectrum and spatial configuration) or not. Categorization of the central scene was impaired by a semantically incongruent peripheral scene, in particular when the two scenes were physically similar. This semantic interference effect was associated with increased activation of the inferior frontal gyrus. When the two scenes were semantically congruent, the dissimilarity of their physical properties impaired the categorization of the central scene. This effect was associated with increased activation in occipito-temporal areas. In line with the hypothesis of predictive mechanisms involved in visual recognition, results suggest that semantic and physical properties of the information coming from peripheral vision would be automatically used to generate predictions that guide the processing of signal in central vision.

2019 ◽  
Author(s):  
Alexia Roux-Sibilon ◽  
Audrey Trouilloud ◽  
Louise Kauffmann ◽  
Nathalie Guyader ◽  
Martial Mermillod ◽  
...  

Predictive models of visual recognition state that predictions based on the rapid processing of low spatial frequencies (LSF) may guide the subsequent processing of high spatial frequencies (HSF). While the HSF signal necessarily comes from central vision, most of the LSF signal comes from peripheral vision. The present study aimed at understanding how LSF in peripheral vision may be used to generate predictive signals that guide visual processes in central vision. In two experiments, participants performed an object categorization task in central vision while a semantically congruent or incongruent scene background was displayed in peripheral vision. In Experiment 1, results showed a congruence effect when the peripheral scene was displayed before the object onset. In Experiment 2, results showed a congruence effect only when the peripheral scene was intact, thus carrying a semantic meaning, but not when it was phase-scrambled, thus carrying only low-level information. The study suggests that the low resolution of peripheral vision facilitates the processing of foveated objects in the visual scene, in line with predictive models of visual recognition.


2015 ◽  
Vol 282 (1799) ◽  
pp. 20142384 ◽  
Author(s):  
Aurore Avarguès-Weber ◽  
Adrian G. Dyer ◽  
Noha Ferrah ◽  
Martin Giurfa

Traditional models of insect vision have assumed that insects are only capable of low-level analysis of local cues and are incapable of global, holistic perception. However, recent studies on honeybee ( Apis mellifera ) vision have refuted this view by showing that this insect also processes complex visual information by using spatial configurations or relational rules. In the light of these findings, we asked whether bees prioritize global configurations or local cues by setting these two levels of image analysis in competition. We trained individual free-flying honeybees to discriminate hierarchical visual stimuli within a Y-maze and tested bees with novel stimuli in which local and/or global cues were manipulated. We demonstrate that even when local information is accessible, bees prefer global information, thus relying mainly on the object's spatial configuration rather than on elemental, local information. This preference can be reversed if bees are pre-trained to discriminate isolated local cues. In this case, bees prefer the hierarchical stimuli with the local elements previously primed even if they build an incorrect global configuration. Pre-training with local cues induces a generic attentional bias towards any local elements as local information is prioritized in the test, even if the local cues used in the test are different from the pre-trained ones. Our results thus underline the plasticity of visual processing in insects and provide new insights for the comparative analysis of visual recognition in humans and animals.


2020 ◽  
Author(s):  
Sara Sims ◽  
Pinar Demirayak ◽  
Simone Cedotal ◽  
Kristina Visscher

ABSTRACTCentral and peripheral vision are important for distinct aspects of everyday life. We use central vision to read and peripheral vision to get the gist of a scene. To understand how these differences are reflected in connectivity between V1 and higher-order cognitive areas, we examined the differential connectivity of V1 that represent central and peripheral vision. We used diffusion-weighted-imaging and resting-state blood-oxygen-level-dependent data to examine structural and functional connectivity. The present results demonstrate strong evidence that centrally-representing portions of V1 are more strongly functionally and structurally connected to the fronto-parietal network than are peripherally representing portions of V1. This suggests that these patterns of connections between central V1 and the fronto-parietal network are direct and support attention-demanding visual tasks. Overall, our findings contribute to understanding how the human brain processes visual information and forms a baseline for any modifications in processing that might occur with training or experience.


2019 ◽  
Author(s):  
Laurent Caplette ◽  
Frédéric Gosselin ◽  
Gregory West

Prior expectations influence how we perceive and recognize objects. However, how they do so remains unclear, especially in the case of real-world complex objects. Expectations of objects may affect which features are used to recognize them subsequently. In this study, we used reverse correlation in neurotypical participants to reveal with high precision how the use of spatial frequencies across time is modulated by everyday object expectations in a recognition task. We show that coarse information leads to accurate responses earlier when an object is expected, indicating that subjects use diagnostic features earlier in this situation. We also demonstrate an increased variability in the later use of coarse information depending on the expected object, indicating that subjects adopt a more specialized recognition strategy when they have a specific object expectation. In summary, our results reveal how expectations of real-world complex objects affect the use of visual information across time.


2016 ◽  
Vol 45 (2) ◽  
pp. 233-252
Author(s):  
Pepijn Viaene ◽  
Alain De Wulf ◽  
Philippe De Maeyer

Landmarks are ideal wayfinding tools to guide a person from A to B as they allow fast reasoning and efficient communication. However, very few path-finding algorithms start from the availability of landmarks to generate a path. In this paper, which focuses on indoor wayfinding, a landmark-based path-finding algorithm is presented in which the endpoint partition is proposed as spatial model of the environment. In this model, the indoor environment is divided into convex sub-shapes, called e-spaces, that are stable with respect to the visual information provided by a person’s surroundings (e.g. walls, landmarks). The algorithm itself implements a breadth-first search on a graph in which mutually visible e-spaces suited for wayfinding are connected. The results of a case study, in which the calculated paths were compared with their corresponding shortest paths, show that the proposed algorithm is a valuable alternative for Dijkstra’s shortest path algorithm. It is able to calculate a path with a minimal amount of actions that are linked to landmarks, while the path length increase is comparable to the increase observed when applying other path algorithms that adhere to natural wayfinding behaviour. However, the practicability of the proposed algorithm is highly dependent on the availability of landmarks and on the spatial configuration of the building.


2010 ◽  
Vol 22 (7) ◽  
pp. 1583-1596 ◽  
Author(s):  
Jean Vroomen ◽  
Jeroen J. Stekelenburg

The neural activity of speech sound processing (the N1 component of the auditory ERP) can be suppressed if a speech sound is accompanied by concordant lip movements. Here we demonstrate that this audiovisual interaction is neither speech specific nor linked to humanlike actions but can be observed with artificial stimuli if their timing is made predictable. In Experiment 1, a pure tone synchronized with a deformation of a rectangle induced a smaller auditory N1 than auditory-only presentations if the temporal occurrence of this audiovisual event was made predictable by two moving disks that touched the rectangle. Local autoregressive average source estimation indicated that this audiovisual interaction may be related to integrative processing in auditory areas. When the moving disks did not precede the audiovisual stimulus—making the onset unpredictable—there was no N1 reduction. In Experiment 2, the predictability of the leading visual signal was manipulated by introducing a temporal asynchrony between the audiovisual event and the collision of moving disks. Audiovisual events occurred either at the moment, before (too “early”), or after (too “late”) the disks collided on the rectangle. When asynchronies varied from trial to trial—rendering the moving disks unreliable temporal predictors of the audiovisual event—the N1 reduction was abolished. These results demonstrate that the N1 suppression is induced by visual information that both precedes and reliably predicts audiovisual onset, without a necessary link to human action-related neural mechanisms.


2018 ◽  
Author(s):  
Simona Monaco ◽  
Giulia Malfatti ◽  
Alessandro Zendron ◽  
Elisa Pellencin ◽  
Luca Turella

AbstractPredictions of upcoming movements are based on several types of neural signals that span the visual, somatosensory, motor and cognitive system. Thus far, pre-movement signals have been investigated while participants viewed the object to be acted upon. Here, we studied the contribution of information other than vision to the classification of preparatory signals for action, even in absence of online visual information. We used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) to test whether the neural signals evoked by visual, memory-based and somato-motor information can be reliably used to predict upcoming actions in areas of the dorsal and ventral visual stream during the preparatory phase preceding the action, while participants were lying still. Nineteen human participants (nine women) performed one of two actions towards an object with their eyes open or closed. Despite the well-known role of ventral stream areas in visual recognition tasks and the specialization of dorsal stream areas in somato-motor processes, we decoded action intention in areas of both streams based on visual, memory-based and somato-motor signals. Interestingly, we could reliably decode action intention in absence of visual information based on neural activity evoked when visual information was available, and vice-versa. Our results show a similar visual, memory and somato-motor representation of action planning in dorsal and ventral visual stream areas that allows predicting action intention across domains, regardless of the availability of visual information.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 58 ◽  
Author(s):  
J Daniel McCarthy ◽  
Colin Kupitz ◽  
Gideon P Caplovitz

Our perception of an object’s size arises from the integration of multiple sources of visual information including retinal size, perceived distance and its size relative to other objects in the visual field. This constructive process is revealed through a number of classic size illusions such as the Delboeuf Illusion, the Ebbinghaus Illusion and others illustrating size constancy. Here we present a novel variant of the Delbouef and Ebbinghaus size illusions that we have named the Binding Ring Illusion. The illusion is such that the perceived size of a circular array of elements is underestimated when superimposed by a circular contour – a binding ring – and overestimated when the binding ring slightly exceeds the overall size of the array. Here we characterize the stimulus conditions that lead to the illusion, and the perceptual principles that underlie it. Our findings indicate that the perceived size of an array is susceptible to the assimilation of an explicitly defined superimposed contour. Our results also indicate that the assimilation process takes place at a relatively high level in the visual processing stream, after different spatial frequencies have been integrated and global shape has been constructed. We hypothesize that the Binding Ring Illusion arises due to the fact that the size of an array of elements is not explicitly defined and therefore can be influenced (through a process of assimilation) by the presence of a superimposed object that does have an explicit size.


2009 ◽  
Vol 21 (4) ◽  
pp. 821-836 ◽  
Author(s):  
Benjamin Straube ◽  
Antonia Green ◽  
Susanne Weis ◽  
Anjan Chatterjee ◽  
Tilo Kircher

In human face-to-face communication, the content of speech is often illustrated by coverbal gestures. Behavioral evidence suggests that gestures provide advantages in the comprehension and memory of speech. Yet, how the human brain integrates abstract auditory and visual information into a common representation is not known. Our study investigates the neural basis of memory for bimodal speech and gesture representations. In this fMRI study, 12 participants were presented with video clips showing an actor performing meaningful metaphoric gestures (MG), unrelated, free gestures (FG), and no arm and hand movements (NG) accompanying sentences with an abstract content. After the fMRI session, the participants performed a recognition task. Behaviorally, the participants showed the highest hit rate for sentences accompanied by meaningful metaphoric gestures. Despite comparable old/new discrimination performances (d′) for the three conditions, we obtained distinct memory-related left-hemispheric activations in the inferior frontal gyrus (IFG), the premotor cortex (BA 6), and the middle temporal gyrus (MTG), as well as significant correlations between hippocampal activation and memory performance in the metaphoric gesture condition. In contrast, unrelated speech and gesture information (FG) was processed in areas of the left occipito-temporal and cerebellar region and the right IFG just like the no-gesture condition (NG). We propose that the specific left-lateralized activation pattern for the metaphoric speech–gesture sentences reflects semantic integration of speech and gestures. These results provide novel evidence about the neural integration of abstract speech and gestures as it contributes to subsequent memory performance.


Sign in / Sign up

Export Citation Format

Share Document