scholarly journals Probing the Neural Systems Underlying Flexible Dimensional Attention

2021 ◽  
pp. 1-16
Author(s):  
Aaron T. Buss ◽  
Vincent Magnotta ◽  
Eliot Hazeltine ◽  
Kaleb Kinder ◽  
John P. Spencer

Abstract Flexibly shifting attention between stimulus dimensions (e.g., shape and color) is a central component of regulating cognition for goal-based behavior. In the present report, we examine the functional roles of different cortical regions by manipulating two demands on task switching that have been confounded in previous studies—shifting attention between visual dimensions and resolving conflict between stimulus–response representations. Dimensional shifting was manipulated by having participants shift attention between dimensions (either shape or color; dimension shift) or keeping the task-relevant dimension the same (dimension same). Conflict between stimulus–response representations was manipulated by creating conflict between response-driven associations from the previous set of trials and the stimulus–response mappings on the current set of trials (e.g., making a leftward response to a red stimulus during the previous task, but being required to make a rightward response to a red stimulus in the current task; stimulus–response conflict), or eliminating conflict by altering the features of the dimension relevant to the sorting rule (stimulus–response no-conflict). These manipulations revealed activation along a network of frontal, temporal, parietal, and occipital cortices. Specifically, dimensional shifting selectively activated frontal and parietal regions. Stimulus–response conflict, on the other hand, produced decreased activation in temporal and occipital cortices. Occipital regions demonstrated a complex pattern of activation that was sensitive to both stimulus–response conflict and dimensional attention switching. These results provide novel information regarding the distinct role that frontal cortex plays in shifting dimensional attention and posterior cortices play in resolving conflict at the stimulus level.

NeuroImage ◽  
2011 ◽  
Vol 54 (1) ◽  
pp. 622-634 ◽  
Author(s):  
Sascha Frühholz ◽  
Ben Godde ◽  
Mareike Finke ◽  
Manfred Herrmann

1985 ◽  
Vol 119 (1) ◽  
pp. 251-264
Author(s):  
R. WILLIAMSON

Electrophysiological recordings were made from afferent units of the octopus angular acceleration receptor system during the electrical stimulation of efferent axons to this system. Of the afferent units examined, 93% changed their activity in response to stimulation of the efferent axons. During efferent stimulation 77% of the afferent units decreased their activity. The magnitude of the inhibition and the time to maximum response were frequency dependent, with most units showing an increase in inhibition with increase in efferent stimulation frequency. The poststimulus recovery from inhibition was of two types: either a gradual increase in activity to the pre-stimulus resting level of activity (Fig. 3) or a rapid increase in activity to a level above the pre-stimulus level, i.e. a postinhibitory rebound or facilitation, and then a gradual decline to the resting level of activity (Fig. 4). During long periods of efferent stimulation (<40 s) the inhibition was not maintained. During stimulation of the efferent axons 16% of the afferent units increased their activity. The post-stimulus response consisted of either a gradual decrease in activity to the pre-stimulus level of resting activity or a rapid increase in activity followed by a gradual decrease to the resting level of activity (Fig. 6). During long periods of efferent stimulation the excitation increased to a plateau level which was maintained for the duration of the stimulus period (Fig. 7). Sinusoidal oscillations of the statocyst evoked bursts of afferent activity in time with the movement. The magnitude of these bursts could be decreased or increased by stimulation of the efferent axons (Fig. 8). It is proposed that two populations of efferents are present in the octopus statocyst, one inhibitory and the other excitatory, and that both types of efferent affect single afferent units.


NeuroImage ◽  
2014 ◽  
Vol 89 ◽  
pp. 280-288 ◽  
Author(s):  
Kai Wang ◽  
Qi Li ◽  
Ya Zheng ◽  
Hongbin Wang ◽  
Xun Liu

2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaoxia Zhang ◽  
Linling Li ◽  
Gan Huang ◽  
Li Zhang ◽  
Zhen Liang ◽  
...  

The existence of nociceptive-specific brain regions has been a controversial issue for decades. Multisensory fMRI studies, which examine fMRI activities in response to various types of sensory stimulation, could help identify nociceptive-specific brain regions, but previous studies are limited by sample size and they did not differentiate nociceptive-specific regions and nociceptive-preferential regions, which have significantly larger responses to nociceptive input. In this study, we conducted a multisensory fMRI experiment on 80 healthy participants, with the aim to determine whether there are certain brain regions that specifically or preferentially respond to nociceptive stimulation. By comparing the evoked fMRI responses across four sensory modalities, we found a series of brain regions specifically or preferentially involved in nociceptive sensory input. Particularly, we found different parts of some cortical regions, such as insula and cingulate gyrus, play different functional roles in the processing of nociceptive stimulation. Hence, this multisensory study improves our understanding of the functional integrations and segregations of the nociceptive-related regions.


2009 ◽  
Vol 65 ◽  
pp. S239
Author(s):  
Akitoshi Ogawa ◽  
Takeshi Asamizuya ◽  
Ken-ichi Ueno ◽  
Atsushi Iriki

2021 ◽  
Author(s):  
Camarin E Rolle ◽  
Mads L Pedersen ◽  
Noriah Johnson ◽  
Ken-ichi Amemori ◽  
Maria Ironside ◽  
...  

Abstract Approach–Avoidance conflict (AAC) arises from decisions with embedded positive and negative outcomes, such that approaching leads to reward and punishment and avoiding to neither. Despite its importance, the field lacks a mechanistic understanding of which regions are driving avoidance behavior during conflict. In the current task, we utilized transcranial magnetic stimulation (TMS) and drift-diffusion modeling to investigate the role of one of the most prominent regions relevant to AAC—the dorsolateral prefrontal cortex (dlPFC). The first experiment uses in-task disruption to examine the right dlPFC’s (r-dlPFC) causal role in avoidance behavior. The second uses single TMS pulses to probe the excitability of the r-dlPFC, and downstream cortical activations, during avoidance behavior. Disrupting r-dlPFC during conflict decision-making reduced reward sensitivity. Further, r-dlPFC was engaged with a network of regions within the lateral and medial prefrontal, cingulate, and temporal cortices that associate with behavior during conflict. Together, these studies use TMS to demonstrate a role for the dlPFC in reward sensitivity during conflict and elucidate the r-dlPFC’s network of cortical regions associated with avoidance behavior. By identifying r-dlPFC’s mechanistic role in AAC behavior, contextualized within its conflict-specific downstream neural connectivity, we advance dlPFC as a potential neural target for psychiatric therapeutics.


2018 ◽  
Vol 115 (30) ◽  
pp. E7202-E7211 ◽  
Author(s):  
Scott L. Brincat ◽  
Markus Siegel ◽  
Constantin von Nicolai ◽  
Earl K. Miller

Somewhere along the cortical hierarchy, behaviorally relevant information is distilled from raw sensory inputs. We examined how this transformation progresses along multiple levels of the hierarchy by comparing neural representations in visual, temporal, parietal, and frontal cortices in monkeys categorizing across three visual domains (shape, motion direction, and color). Representations in visual areas middle temporal (MT) and V4 were tightly linked to external sensory inputs. In contrast, lateral prefrontal cortex (PFC) largely represented the abstracted behavioral relevance of stimuli (task rule, motion category, and color category). Intermediate-level areas, including posterior inferotemporal (PIT), lateral intraparietal (LIP), and frontal eye fields (FEF), exhibited mixed representations. While the distribution of sensory information across areas aligned well with classical functional divisions (MT carried stronger motion information, and V4 and PIT carried stronger color and shape information), categorical abstraction did not, suggesting these areas may participate in different networks for stimulus-driven and cognitive functions. Paralleling these representational differences, the dimensionality of neural population activity decreased progressively from sensory to intermediate to frontal cortex. This shows how raw sensory representations are transformed into behaviorally relevant abstractions and suggests that the dimensionality of neural activity in higher cortical regions may be specific to their current task.


2014 ◽  
Vol 111 (1) ◽  
pp. 182-196 ◽  
Author(s):  
T. Yokota ◽  
K. Eguchi ◽  
K. Hiraba

The rostral nucleus of the solitary tract (rNST) is the first-order taste relay in rats. This study constructed topographical distributions of taste response characteristics (best-stimulus, response magnitude, and taste-tuning) from spike discharges of single neurons in the rNST. The rNST is divided into four subregions along the rostrocaudal (RC) axis, which include r1–r4. We explored single-neuron activity in r1–r3, using multibarreled glass microelectrodes. NaCl (N)-best neurons were localized to the rostral half of r1–r3, while HCl (H)-best and sucrose (S)-best neurons showed a tendency toward more caudal locations. NaCl and HCl (NH)-best neurons were distributed across r2–r3. The mean RC values and Mahalanobis distance indicated a significant difference between the distributions of N-best and NH-best neurons in which N-best neurons were located more rostrally. The region of large responses to NaCl (net response >5 spikes/s) overlapped with the distribution of N-best neurons. The region of large responses to HCl extended widely over r1–r3. The region of large responses to sucrose was in the medial part of r2. The excitatory region (>1 spike/s) for quinine overlapped with that for HCl. Neurons with sharp to moderate tuning were located primarily in r1–r2, while those with broad tuning were located in r2–r3. The robust responses to NaCl in r1–r2 primarily contributed to sharp to moderate taste-tuning. Neurons in r3 tended to have broad tuning, apparently due to small responses to both NaCl and HCl. Therefore, the rNST is spatially organized by neurons with distinct taste response characteristics, suggesting that these neurons serve different functional roles.


2006 ◽  
Vol 18 (5) ◽  
pp. 781-792 ◽  
Author(s):  
Gaia Scerif ◽  
Michael S. Worden ◽  
Matthew Davidson ◽  
Liat Seiger ◽  
B. J. Casey

When responding to stimuli in our environment, the presence of multiple items associated with task-relevant responses affects both ongoing response selection and subsequent behavior. Computational modeling of conflict monitoring and neuroimaging data predict that the recent context of response competition will bias the selection of certain stimuli over others very early in the processing stream through increased focal spatial attention. We used high-density EEG to test this hypothesis and to investigate the contextual effects on nonspatial, early stimulus processing in a modified flanker task. Subjects were required to respond to a central arrow and to ignore potentially conflicting information from flanking arrows in trials preceded by a series of either compatible or incompatible trials. On some trials, we presented the flanking arrows in the absence of the central target. The visual P1 component was selectively enhanced only for incompatible trials when preceded by incompatible ones, suggesting that contextual effects depend on feature-based processing, and not only simple enhancement of the target location. Context effects also occurred on no-target trials as evidenced by an enhanced early-evoked response when they followed compatible compared to incompatible trials, suggesting that spatial attention was also modulated by recent context. These results support a multi-componential account of spatial and nonspatial attention and they suggest that contextually driven cognitive control mechanisms can operate on specific stimulus features at extremely early stages of processing within stimulus-response conflict tasks.


Sign in / Sign up

Export Citation Format

Share Document