scholarly journals Real-Time Hallucination Simulation and Sonification through User-Led Development of an iPad Augmented Reality Performance

Leonardo ◽  
2015 ◽  
Vol 48 (3) ◽  
pp. 235-242 ◽  
Author(s):  
Alexis Kirke ◽  
Joel Eaton ◽  
Eduardo Miranda

The simulation of visual hallucinations has multiple applications. The authors present a new approach to hallucination simulation, initially developed for a performance, that proved to have uses for individuals suffering from certain types of hallucinations. The system, originally developed with a focus on the visual symptoms of palinopsia experienced by the lead author, allows real-time visual expression using augmented reality via an iPad. It also allows the hallucinations to be converted into sound through visuals sonification. Although no formal experimentation was conducted, the authors report on a number of unsolicited informal responses to the simulator from palinopsia sufferers and the Palinopsia Foundation.

2021 ◽  
Author(s):  
Phathompat Boonyasaknanon ◽  
Raymond Pols ◽  
Katja Schulze ◽  
Robert Rundle

Abstract An augmented reality (AR) system is presented which enhances the real-time collaboration of domain experts involved in the geologic modeling of complex reservoirs. An evaluation of traditional techniques is compared with this new approach. The objective of geologic modeling is to describe the subsurface as accurately and in as much detail as possible given the available data. This is necessarily an iterative process since as new wells are drilled more data becomes available which either validates current assumptions or forces a re-evaluation of the model. As the speed of reservoir development increases there is a need for expeditious updates of the subsurface model as working with an outdated model can lead to costly mistakes. Common practice is for a geologist to maintain the geologic model while working closely with other domain experts who are frequently not co-located with the geologist. Time-critical analysis can be hampered by the fact that reservoirs, which are inherently 3D objects, are traditionally viewed with 2D screens. The system presented here allows the geologic model to be rendered as a hologram in multiple locations to allow domain experts to collaborate and analyze the reservoir in real-time. Collaboration on 3D models has not changed significantly in a generation. For co-located personnel the approach is to gather around a 2D screen. For remote personnel the approach has been sharing a model through a 2D screen along with video chat. These approaches are not optimal for many reasons. Over the years various attempts have been tried to enhance the collaboration experience and have all fallen short. In particular virtual reality (VR) has been seen as a solution to this problem. However, we have found that augmented reality (AR) is a much better solution for many subtle reasons which are explored in the paper. AR has already acquired an impressive track record in various industries. AR will have applications in nearly all industries. For various historical reasons, the uptake for AR is much faster in some industries than others. It is too early to tell whether the use of augmented reality in geological applications will be transformative, however the results of this initial work are promising.


Author(s):  
Christian Jacquemin ◽  
Rami Ajaj ◽  
Sylvain Le Beux ◽  
Christophe d’Alessandro ◽  
Markus Noisternig ◽  
...  

This paper discusses the Organ Augmented Reality (ORA) project, which considers an audio and visual augmentation of an historical church organ to enhance the understanding and perception of the instrument through intuitive and familiar mappings and outputs. ORA has been presented to public audiences at two immersive concerts. The visual part of the installation was based on a spectral analysis of the music. The visuals were projections of LED-bar VU-meters on the organ pipes. The audio part was an immersive periphonic sound field, created from the live capture of the organ sounds, so that the listeners had the impression of being inside the augmented instrument. The graphical architecture of the installation is based on acoustic analysis, mapping from sound levels to synchronous graphics through visual calibration, real-time multi-layer graphical composition and animation. The ORA project is a new approach to musical instrument augmentation that combines enhanced instrument legibility and enhanced artistic content.


Author(s):  
Christian Jacquemin ◽  
Rami Ajaj ◽  
Sylvain Le Beux ◽  
Christophe d’Alessandro ◽  
Markus Noisternig ◽  
...  

This paper discusses the Organ Augmented Reality (ORA) project, which considers an audio and visual augmentation of an historical church organ to enhance the understanding and perception of the instrument through intuitive and familiar mappings and outputs. ORA has been presented to public audiences at two immersive concerts. The visual part of the installation was based on a spectral analysis of the music. The visuals were projections of LED-bar VU-meters on the organ pipes. The audio part was an immersive periphonic sound field, created from the live capture of the organ sounds, so that the listeners had the impression of being inside the augmented instrument. The graphical architecture of the installation is based on acoustic analysis, mapping from sound levels to synchronous graphics through visual calibration, real-time multi-layer graphical composition and animation. The ORA project is a new approach to musical instrument augmentation that combines enhanced instrument legibility and enhanced artistic content.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Rujianto Eko Saputro ◽  
Dhanar Intan Surya Saputra
Keyword(s):  

Media pembelajaran ternyata selalu mengikuti perkembangan teknologi yangada, mulai dari teknologi cetak, audio visual, komputer sampai teknologi gabunganantara teknologi cetak dengan komputer. Saat ini media pembelajaran hasil gabunganteknologi cetak dan komputer dapat diwujudkan dengan media teknologi AugmentedReality (AR). Augmented Reality (AR) adalah teknologi yang digunakan untukmerealisasikan dunia virtual ke dalam dunia nyata secara real-time. Organ pencernaanmanusia terdiri atas Mulut, Kerongkongan atau esofagus, Lambung, Usus halus, danUsus besar. Media pembelajaran mengenal organ pencernaan manusia pada saat inisangat monoton, yaitu melalui gambar, buku atau bahkan alat proyeksi lainnya.Menggunakan Augmented Reality yang mampu merealisasikan dunia virtual ke dunianyata, dapat mengubah objek-objek tersebut menjadi objek 3D, sehingga metodepembelajaran tidaklah monoton dan anak-anak jadi terpacu untuk mengetahuinya lebihlanjut, seperti mengetahui nama organ dan keterangan dari masing-masing organtersebut.


2018 ◽  
Author(s):  
Kyle Plunkett

This manuscript provides two demonstrations of how Augmented Reality (AR), which is the projection of virtual information onto a real-world object, can be applied in the classroom and in the laboratory. Using only a smart phone and the free HP Reveal app, content rich AR notecards were prepared. The physical notecards are based on Organic Chemistry I reactions and show only a reagent and substrate. Upon interacting with the HP Reveal app, an AR video projection shows the product of the reaction as well as a real-time, hand-drawn curved-arrow mechanism of how the product is formed. Thirty AR notecards based on common Organic Chemistry I reactions and mechanisms are provided in the Supporting Information and are available for widespread use. In addition, the HP Reveal app was used to create AR video projections onto laboratory instrumentation so that a virtual expert can guide the user during the equipment setup and operation.


Sign in / Sign up

Export Citation Format

Share Document