Multistability in Spiking Neuron Models of Delayed Recurrent Inhibitory Loops

2007 ◽  
Vol 19 (8) ◽  
pp. 2124-2148 ◽  
Author(s):  
Jianfu Ma ◽  
Jianhong Wu

We consider the effect of the effective timing of a delayed feedback on the excitatory neuron in a recurrent inhibitory loop, when biological realities of firing and absolute refractory period are incorporated into a phenomenological spiking linear or quadratic integrate-and-fire neuron model. We show that such models are capable of generating a large number of asymptotically stable periodic solutions with predictable patterns of oscillations. We observe that the number of fixed points of the so-called phase resetting map coincides with the number of distinct periods of all stable periodic solutions rather than the number of stable patterns. We demonstrate how configurational information corresponding to these distinct periods can be explored to calculate and predict the number of stable patterns.

2009 ◽  
Vol 21 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Hans E. Plesser ◽  
Markus Diesmann

Lovelace and Cios ( 2008 ) recently proposed a very simple spiking neuron (VSSN) model for simulations of large neuronal networks as an efficient replacement for the integrate-and-fire neuron model. We argue that the VSSN model falls behind key advances in neuronal network modeling over the past 20 years, in particular, techniques that permit simulators to compute the state of the neuron without repeated summation over the history of input spikes and to integrate the subthreshold dynamics exactly. State-of-the-art solvers for networks of integrate-and-fire model neurons are substantially more efficient than the VSSN simulator and allow routine simulations of networks of some 105 neurons and 109 connections on moderate computer clusters.


Author(s):  
Wulfram Gerstner ◽  
Werner M. Kistler

2011 ◽  
Vol 106 (1) ◽  
pp. 361-373 ◽  
Author(s):  
Srdjan Ostojic

Interspike interval (ISI) distributions of cortical neurons exhibit a range of different shapes. Wide ISI distributions are believed to stem from a balance of excitatory and inhibitory inputs that leads to a strongly fluctuating total drive. An important question is whether the full range of experimentally observed ISI distributions can be reproduced by modulating this balance. To address this issue, we investigate the shape of the ISI distributions of spiking neuron models receiving fluctuating inputs. Using analytical tools to describe the ISI distribution of a leaky integrate-and-fire (LIF) neuron, we identify three key features: 1) the ISI distribution displays an exponential decay at long ISIs independently of the strength of the fluctuating input; 2) as the amplitude of the input fluctuations is increased, the ISI distribution evolves progressively between three types, a narrow distribution (suprathreshold input), an exponential with an effective refractory period (subthreshold but suprareset input), and a bursting exponential (subreset input); 3) the shape of the ISI distribution is approximately independent of the mean ISI and determined only by the coefficient of variation. Numerical simulations show that these features are not specific to the LIF model but are also present in the ISI distributions of the exponential integrate-and-fire model and a Hodgkin-Huxley-like model. Moreover, we observe that for a fixed mean and coefficient of variation of ISIs, the full ISI distributions of the three models are nearly identical. We conclude that the ISI distributions of spiking neurons in the presence of fluctuating inputs are well described by gamma distributions.


2003 ◽  
Vol 2 (3) ◽  
pp. 158-164 ◽  
Author(s):  
T. Morie ◽  
T. Matsuura ◽  
M. Nagata ◽  
A. Iwata

Sign in / Sign up

Export Citation Format

Share Document