Dynamics of Multiple-Choice Decision Making

2013 ◽  
Vol 25 (8) ◽  
pp. 2108-2145 ◽  
Author(s):  
Hongzhi You ◽  
Da-Hui Wang

Neuroscientists have carried out comprehensive experiments to reveal the neural mechanisms underlying the perceptual decision making that pervades daily life. These experiments have illuminated salient features of decision making, including probabilistic choice behavior, the ramping activity of decision-related neurons, and the dependence of decision time and accuracy on the difficulty of the task. Spiking network models have reproduced these features, and a two-dimensional mean field model has demonstrated that the saddle node structure underlies two-alternative decision making. Here, we reduced a spiking network model to an analytically tractable, partial integro-differential system and characterized not only multiple-choice decision behaviors but also the time course of neural activities underlying decisions, providing a mechanistic explanation for the observations noted in the experiments. First, we observed that a two-bump unstable steady state of the system is responsible for two-choice decision making, similar to the saddle node structure in the two-dimensional mean field model. However, for four-choice decision making, three types of unstable steady states collectively predominate the time course of the evolution from the initial state to the stable states. Second, the time constant of the unstable steady state can explain the fact that four-choice decision making requires a longer time than two-choice decision making. However, the quicker decision, given a stronger motion strength, cannot be explained by the time constant of the unstable steady state. Rather, the decision time can be attributed to the projection coefficient of the difference between the initial state and the unstable steady state on the eigenvector corresponding to the largest positive eigenvalue.

2006 ◽  
Vol 95 (5) ◽  
pp. 2923-2932 ◽  
Author(s):  
Roxanna M. Webber ◽  
Garrett B. Stanley

Adaptation is a ubiquitous property of all sensory pathways of the brain and thus likely critical in the encoding of behaviorally relevant sensory information. Despite evidence identifying specific biophysical mechanisms contributing to sensory adaptation, its functional role in sensory encoding is not well understood, particularly in the natural environment where transient rather than steady-state activity could dominate the neuronal representation. Here, we show that the heterogeneous transient and steady-state adaptation dynamics of single cortical neurons in the rat vibrissa system were well characterized by an underlying state variable. The state was directly predictable from temporal response properties that capture the time course of postexcitatory suppression following an isolated vibrissa deflection. Altering the initial state, by preceding the periodic stimulus with an additional vibrissa deflection, strongly influenced single-cell transient cortical adaptation responses. Despite the different transient activity, neurons reached the same steady-state adapted response with a time to steady state that was independent of the initial state. However, the differences in transient activity observed on small time scales were not present when activity was integrated over the longer time scale of a stimulus cycle. Taken together, the results here demonstrate that although adaptation can have significant effects on transient neuronal activity and direction selectivity, a simple measure of the time course of suppression following an isolated stimulus predicted a large portion of the observed adaptation dynamics.


1996 ◽  
Vol 7 (2) ◽  
pp. 97-111 ◽  
Author(s):  
S. J. Chapman ◽  
J. Rubinstein ◽  
M. Schatzman

A mean-field model for the motion of rectilinear vortices in the mixed state of a type-II superconductor is formulated. Steady-state solutions for some simple geometries are examined, and a local existence result is proved for an arbitrary smooth geometry. Finally, a variational formulation of the steady-state problem is given which shows the solution to be unique.


2002 ◽  
Vol 66 (1) ◽  
Author(s):  
Umberto Marini Bettolo Marconi ◽  
Andrea Puglisi

1999 ◽  
Vol 10 (4) ◽  
pp. 319-352 ◽  
Author(s):  
R. SCHÄTZLE ◽  
V. STYLES

We study a mean-field model of superconducting vortices in one and two dimensions. The existence of a weak solution and a steady-state solution of the model are proved. A special case of the steady-state problem is shown to be of the form of a free boundary problem. The solutions of this free boundary problem are investigated. It is also shown that the weak solution of the one-dimensional model is unique and satisfies an entropy inequality.


2020 ◽  
Vol 32 (9) ◽  
pp. 1615-1634 ◽  
Author(s):  
Richard Gast ◽  
Helmut Schmidt ◽  
Thomas R. Knösche

Bursting plays an important role in neural communication. At the population level, macroscopic bursting has been identified in populations of neurons that do not express intrinsic bursting mechanisms. For the analysis of phase transitions between bursting and non-bursting states, mean-field descriptions of macroscopic bursting behavior are a valuable tool. In this article, we derive mean-field descriptions of populations of spiking neurons and examine whether states of collective bursting behavior can arise from short-term adaptation mechanisms. Specifically, we consider synaptic depression and spike-frequency adaptation in networks of quadratic integrate-and-fire neurons. Analyzing the mean-field model via bifurcation analysis, we find that bursting behavior emerges for both types of short-term adaptation. This bursting behavior can coexist with steady-state behavior, providing a bistable regime that allows for transient switches between synchronized and nonsynchronized states of population dynamics. For all of these findings, we demonstrate a close correspondence between the spiking neural network and the mean-field model. Although the mean-field model has been derived under the assumptions of an infinite population size and all-to-all coupling inside the population, we show that this correspondence holds even for small, sparsely coupled networks. In summary, we provide mechanistic descriptions of phase transitions between bursting and steady-state population dynamics, which play important roles in both healthy neural communication and neurological disorders.


2021 ◽  
Author(s):  
David Reyner-Parra ◽  
Gemma Huguet

Macroscopic oscillations in the brain have been observed to be involved in many cognitive tasks but their role is not completely understood. One of the suggested functions of the oscillations is to dynamically modulate communication between neural circuits. The Communication Through Coherence (CTC) theory establishes that oscillations reflect rhythmic changes in excitability of the neuronal populations. Thus, populations need to be properly phase-locked so that input volleys arrive at the peaks of excitability of the receiving population to communicate effectively. Here, we present a modeling study to explore synchronization between neuronal circuits connected with unidirectional projections. We consider an Excitatory-Inhibitory (E-I) network of quadratic integrate-and-fire neurons modeling a Pyramidal-Interneuronal Network Gamma (PING) rhythm. The network receives an external periodic input from either one or two sources, simulating the inputs from other oscillating neural groups. We use recently developed mean-field models which provide an exact description of the macroscopic activity of the spiking network. This low-dimensional mean field model allows us to use tools from bifurcation theory to identify the phase-locked states between the input and the target population as a function of the amplitude, frequency and coherence of the inputs. We identify the conditions for optimal phaselocking and selective communication. We find that inputs with high coherence can entrain the network for a wider range of frequencies. Besides, faster oscillatory inputs than the intrinsic network gamma cycle show more effective communication than inputs with similar frequency. Our analysis further shows that the entrainment of the network by inputs with higher frequency is more robust to distractors, thus giving them an advantage to entrain the network. Finally, we show that pulsatile inputs can switch between attended inputs in selective attention.


2017 ◽  
Author(s):  
Yann Zerlaut∗ ◽  
Sandrine Chemla ◽  
Frederic Chavane ◽  
Alain Destexhe∗

AbstractVoltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at macroscopic scales. Since for each pixel VSDi signals report the average membrane potential over hundreds of neurons, it seems natural to use a mean-field formalism to model such signals. Here, we present a mean-field model of networks of Adaptive Exponential (AdEx) integrate-and-fire neurons, with conductance-based synaptic interactions. We study here a network of regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons. We use a Master Equation formalism, together with a semi-analytic approach to the transfer function of AdEx neurons to describe the average dynamics of the coupled populations. We compare the predictions of this mean-field model to simulated networks of RS-FS cells, first at the level of the spontaneous activity of the network, which is well predicted by the analytical description. Second, we investigate the response of the network to time-varying external input, and show that the mean-field model predicts the response time course of the population. Finally, to model VSDi signals, we consider a one-dimensional ring model made of interconnected RS-FS mean-field units. We found that this model can reproduce the spatio-temporal patterns seen in VSDi of awake monkey visual cortex as a response to local and transient visual stimuli. Conversely, we show that the model allows one to infer physiological parameters from the experimentally-recorded spatio-temporal patterns.


Sign in / Sign up

Export Citation Format

Share Document