Bayesian Active Learning of Neural Firing Rate Maps with Transformed Gaussian Process Priors

2014 ◽  
Vol 26 (8) ◽  
pp. 1519-1541 ◽  
Author(s):  
Mijung Park ◽  
J. Patrick Weller ◽  
Gregory D. Horwitz ◽  
Jonathan W. Pillow

A firing rate map, also known as a tuning curve, describes the nonlinear relationship between a neuron's spike rate and a low-dimensional stimulus (e.g., orientation, head direction, contrast, color). Here we investigate Bayesian active learning methods for estimating firing rate maps in closed-loop neurophysiology experiments. These methods can accelerate the characterization of such maps through the intelligent, adaptive selection of stimuli. Specifically, we explore the manner in which the prior and utility function used in Bayesian active learning affect stimulus selection and performance. Our approach relies on a flexible model that involves a nonlinearly transformed gaussian process (GP) prior over maps and conditionally Poisson spiking. We show that infomax learning, which selects stimuli to maximize the information gain about the firing rate map, exhibits strong dependence on the seemingly innocuous choice of nonlinear transformation function. We derive an alternate utility function that selects stimuli to minimize the average posterior variance of the firing rate map and analyze the surprising relationship between prior parameterization, stimulus selection, and active learning performance in GP-Poisson models. We apply these methods to color tuning measurements of neurons in macaque primary visual cortex.

Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 890
Author(s):  
Sergey Oladyshkin ◽  
Farid Mohammadi ◽  
Ilja Kroeker ◽  
Wolfgang Nowak

Gaussian process emulators (GPE) are a machine learning approach that replicates computational demanding models using training runs of that model. Constructing such a surrogate is very challenging and, in the context of Bayesian inference, the training runs should be well invested. The current paper offers a fully Bayesian view on GPEs for Bayesian inference accompanied by Bayesian active learning (BAL). We introduce three BAL strategies that adaptively identify training sets for the GPE using information-theoretic arguments. The first strategy relies on Bayesian model evidence that indicates the GPE’s quality of matching the measurement data, the second strategy is based on relative entropy that indicates the relative information gain for the GPE, and the third is founded on information entropy that indicates the missing information in the GPE. We illustrate the performance of our three strategies using analytical- and carbon-dioxide benchmarks. The paper shows evidence of convergence against a reference solution and demonstrates quantification of post-calibration uncertainty by comparing the introduced three strategies. We conclude that Bayesian model evidence-based and relative entropy-based strategies outperform the entropy-based strategy because the latter can be misleading during the BAL. The relative entropy-based strategy demonstrates superior performance to the Bayesian model evidence-based strategy.


2021 ◽  
Vol 1 ◽  
Author(s):  
Patrick Bangert ◽  
Hankyu Moon ◽  
Jae Oh Woo ◽  
Sima Didari ◽  
Heng Hao

To train artificial intelligence (AI) systems on radiology images, an image labeling step is necessary. Labeling for radiology images usually involves a human radiologist manually drawing a (polygonal) shape onto the image and attaching a word to it. As datasets are typically large, this task is repetitive, time-consuming, error-prone, and expensive. The AI methodology of active learning (AL) can assist human labelers by continuously sorting the unlabeled images in order of information gain and thus getting the labeler always to label the most informative image next. We find that after about 10%, depending on the dataset, of the images in a realistic dataset are labeled, virtually all the information content has been learnt and the remaining images can be automatically labeled. These images can then be checked by the radiologist, which is far easier and faster to do. In this way, the entire dataset is labeled with much less human effort. We introduce AL in detail and expose the effectiveness using three real-life datasets. We contribute five distinct elements to the standard AL workflow creating an advanced methodology.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3400
Author(s):  
Tulay Ercan ◽  
Costas Papadimitriou

A framework for optimal sensor placement (OSP) for virtual sensing using the modal expansion technique and taking into account uncertainties is presented based on information and utility theory. The framework is developed to handle virtual sensing under output-only vibration measurements. The OSP maximizes a utility function that quantifies the expected information gained from the data for reducing the uncertainty of quantities of interest (QoI) predicted at the virtual sensing locations. The utility function is extended to make the OSP design robust to uncertainties in structural model and modeling error parameters, resulting in a multidimensional integral of the expected information gain over all possible values of the uncertain parameters and weighted by their assigned probability distributions. Approximate methods are used to compute the multidimensional integral and solve the optimization problem that arises. The Gaussian nature of the response QoI is exploited to derive useful and informative analytical expressions for the utility function. A thorough study of the effect of model, prediction and measurement errors and their uncertainties, as well as the prior uncertainties in the modal coordinates on the selection of the optimal sensor configuration is presented, highlighting the importance of accounting for robustness to errors and other uncertainties.


Author(s):  
Quan Zhou ◽  
Chongming Wang ◽  
Zeyu Sun ◽  
Ji Li ◽  
Huw Williams ◽  
...  

Abstract Lithium-ion batteries have been widely used in renewable energy storage and electrified transport systems, and State-of-Health (SoH) prediction is critical for safe and reliable operation of the lithium-ion batteries. Following the standard routine which predicts battery SoH based on charging curves, a human-knowledge-augmented Gaussian process regression (HAGPR) model is newly proposed for SoH prediction by incorporating two promising artificial intelligence techniques, i.e., the Gaussian process regression (GPR) and the adaptive neural fuzzy inference system (ANFIS). Based on human knowledge on voltage profile during battery degradation, a ANFIS is developed for feature extraction that helps improve machine learning performance and reduce the need of physical testing. Then, the ANFIS is integrated with a GPR model to enable SoH prediction with the extracted feature from battery aging test data. With a conventional GPR model as the baseline, a comparison study is conducted to demonstrate the advantage and robustness of the proposed HAGPR model. It indicates that the proposed HAGPR model can reduce at least 12% root mean square error with 31.8% less battery aging testing compared to the GPR model.


Sign in / Sign up

Export Citation Format

Share Document