scholarly journals Neural Network Acceptability Judgments

Author(s):  
Alex Warstadt ◽  
Amanpreet Singh ◽  
Samuel R. Bowman

This paper investigates the ability of artificial neural networks to judge the grammatical acceptability of a sentence, with the goal of testing their linguistic competence. We introduce the Corpus of Linguistic Acceptability (CoLA), a set of 10,657 English sentences labeled as grammatical or ungrammatical from published linguistics literature. As baselines, we train several recurrent neural network models on acceptability classification, and find that our models outperform unsupervised models by Lau et al. (2016) on CoLA. Error-analysis on specific grammatical phenomena reveals that both Lau et al.’s models and ours learn systematic generalizations like subject-verb-object order. However, all models we test perform far below human level on a wide range of grammatical constructions.

2020 ◽  
Vol 4 (2) ◽  
pp. 73
Author(s):  
Sushan Poudel ◽  
Dr. R Anuradha

Speech is one of the most effective way for human and machine to interact. This project aims to build Speech Command Recognition System that is capable of predicting the predefined speech commands. Dataset provided by Google’s TensorFlow and AIY teams is used to implement different Neural Network models which include Convolutional Neural Network and Recurrent Neural Network combined with Convolutional Neural Network. The combination of Convolutional and Recurrent Neural Network outperforms Convolutional Neural Network alone by 8% and achieved 96.66% accuracy for 20 labels.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


2002 ◽  
pp. 220-235 ◽  
Author(s):  
Paul Lajbcygier

The pricing of options on futures is compared using conventional models and artificial neural networks. This work demonstrates superior pricing accuracy using the artificial neural networks in an important subset of the input parameter set.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul A. Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


2007 ◽  
Vol 362 (1479) ◽  
pp. 421-430 ◽  
Author(s):  
Sami Merilaita

In this paper, I investigate the use of artificial neural networks in the study of prey coloration. I briefly review the anti-predator functions of prey coloration and describe both in general terms and with help of two studies as specific examples the use of neural network models in the research on prey coloration. The first example investigates the effect of visual complexity of background on evolution of camouflage. The second example deals with the evolutionary choice of defence strategy, crypsis or aposematism. I conclude that visual information processing by predators is central in evolution of prey coloration. Therefore, the capability to process patterns as well as to imitate aspects of predator's information processing and responses to visual information makes neural networks a well-suited modelling approach for the study of prey coloration. In addition, their suitability for evolutionary simulations is an advantage when complex or dynamic interactions are modelled. Since not all behaviours of neural network models are necessarily biologically relevant, it is important to validate a neural network model with empirical data. Bringing together knowledge about neural networks with knowledge about topics of prey coloration would provide a potential way to deepen our understanding of the specific appearances of prey coloration.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 618
Author(s):  
Paola A. Sanchez-Sanchez ◽  
José Rafael García-González ◽  
Juan Manuel Rúa Ascar

Background: Previous studies of migraine classification have focused on the analysis of brain waves, leading to the development of complex tests that are not accessible to the majority of the population. In the early stages of this pathology, patients tend to go to the emergency services or outpatient department, where timely identification largely depends on the expertise of the physician and continuous monitoring of the patient. However, owing to the lack of time to make a proper diagnosis or the inexperience of the physician, migraines are often misdiagnosed either because they are wrongly classified or because the disease severity is underestimated or disparaged. Both cases can lead to inappropriate, unnecessary, or imprecise therapies, which can result in damage to patients’ health. Methods: This study focuses on designing and testing an early classification system capable of distinguishing between seven types of migraines based on the patient’s symptoms. The methodology proposed comprises four steps: data collection based on symptoms and diagnosis by the treating physician, selection of the most relevant variables, use of artificial neural network models for automatic classification, and selection of the best model based on the accuracy and precision of the diagnosis. Results: The artificial neural network models used provide an excellent classification performance, with accuracy and precision levels >97% and which exceed the classifications made using other model, such as logistic regression, support vector machines, nearest neighbor, and decision trees. Conclusions: The implementation of migraine classification through artificial neural networks is a powerful tool that reduces the time to obtain accurate, reliable, and timely clinical diagnoses.


2019 ◽  
Author(s):  
Yue Liu ◽  
Marc W. Howard

AbstractSequential neural activity has been observed in many parts of the brain and has been proposed as a neural mechanism for memory. The natural world expresses temporal relationships at a wide range of scales. Because we cannot know the relevant scales a priori it is desirable that memory, and thus the generated sequences, are scale-invariant. Although recurrent neural network models have been proposed as a mechanism for generating sequences, the requirements for scale-invariant sequences are not known. This paper reports the constraints that enable a linear recurrent neural network model to generate scale-invariant sequential activity. A straightforward eigendecomposition analysis results in two independent conditions that are required for scaleinvariance for connectivity matrices with real, distinct eigenvalues. First, the eigenvalues of the network must be geometrically spaced. Second, the eigenvectors must be related to one another via translation. These constraints are easily generalizable for matrices that have complex and distinct eigenvalues. Analogous albeit less compact constraints hold for matrices with degenerate eigenvalues. These constraints, along with considerations on initial conditions, provide a general recipe to build linear recurrent neural networks that support scale-invariant sequential activity.


2020 ◽  
Vol 32 (7) ◽  
pp. 1379-1407
Author(s):  
Yue Liu ◽  
Marc W. Howard

Sequential neural activity has been observed in many parts of the brain and has been proposed as a neural mechanism for memory. The natural world expresses temporal relationships at a wide range of scales. Because we cannot know the relevant scales a priori, it is desirable that memory, and thus the generated sequences, is scale invariant. Although recurrent neural network models have been proposed as a mechanism for generating sequences, the requirements for scale-invariant sequences are not known. This letter reports the constraints that enable a linear recurrent neural network model to generate scale-invariant sequential activity. A straightforward eigendecomposition analysis results in two independent conditions that are required for scale invariance for connectivity matrices with real, distinct eigenvalues. First, the eigenvalues of the network must be geometrically spaced. Second, the eigenvectors must be related to one another via translation. These constraints are easily generalizable for matrices that have complex and distinct eigenvalues. Analogous albeit less compact constraints hold for matrices with degenerate eigenvalues. These constraints, along with considerations on initial conditions, provide a general recipe to build linear recurrent neural networks that support scale-invariant sequential activity.


1996 ◽  
Vol 04 (03) ◽  
pp. 433-444 ◽  
Author(s):  
F. SPITZ ◽  
S. LEK ◽  
I. DIMOPOULOS

Wildlife managers need to evaluate the regional risk of damage by big game in any cultivated plot. Nevertheless, such an evaluation can be biased by nonlinearity, a common difficulty when facing ecological problems. We propose a model for the impact of wild boars on cultivated fields, based on artificial neural networks, with a backpropagation algorithm. The first model, predicting the frequency of impact on a particular plot, gives a good determination coefficient (R2=0.91). The second model, predicting the presence or absence of impact during a particular week, gives over 80 % correct results.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yasin Icel ◽  
Mehmet Salih Mamis ◽  
Abdulcelil Bugutekin ◽  
Mehmet Ismail Gursoy

The amount of electric energy produced by photovoltaic panels depends on air temperature, humidity rate, wind velocity, photovoltaic module temperature, and particularly solar radiation. Being aware of the behaviour patterns of the panels to be used in project and planning works regarding photovoltaic applications will set forth a realistic expense form; therefore, erroneous investments will be avoided, and the country budget will benefit from added value. The power ratings obtained from the photovoltaic panels and the environmental factors were measured and recorded for a year by the measurement stations established in three diverse regions (Adiyaman-Malatya-Sanliurfa). In the developed artificial neural network models, the estimation accuracy was 99.94%. Furthermore, by taking the data of the General Directorate of Meteorology as a reference, models of artificial neural networks were developed using the data from Adiyaman province for training; by using Malatya and Sanliurfa as test data, 99.57% estimation accuracy was achieved. With the artificial neural network models developed as a result of the study, the energy efficiency for the photovoltaic energy systems desired to be established by using meteorological parameters such as temperature, humidity, wind, and solar radiation of various regions anywhere in the world can be estimated with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document