Artificial Neural Networks

Author(s):  
Joarder Kamruzzaman ◽  
Ruhul Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.

Author(s):  
Joarder Kamruzzaman ◽  
Ruhul A. Sarker

The primary aim of this chapter is to present an overview of the artificial neural network basics and operation, architectures, and the major algorithms used for training the neural network models. As can be seen in subsequent chapters, neural networks have made many useful contributions to solve theoretical and practical problems in finance and manufacturing areas. The secondary aim here is therefore to provide a brief review of artificial neural network applications in finance and manufacturing areas.


Author(s):  
Suraphan Thawornwong ◽  
David Enke

During the last few years there has been growing literature on applications of artificial neural networks to business and financial domains. In fact, a great deal of attention has been placed in the area of stock return forecasting. This is due to the fact that once artificial neural network applications are successful, monetary rewards will be substantial. Many studies have reported promising results in successfully applying various types of artificial neural network architectures for predicting stock returns. This chapter reviews and discusses various neural network research methodologies used in 45 journal articles that attempted to forecast stock returns. Modeling techniques and suggestions from the literature are also compiled and addressed. The results show that artificial neural networks are an emerging and promising computational technology that will continue to be a challenging tool for future research.


2002 ◽  
pp. 220-235 ◽  
Author(s):  
Paul Lajbcygier

The pricing of options on futures is compared using conventional models and artificial neural networks. This work demonstrates superior pricing accuracy using the artificial neural networks in an important subset of the input parameter set.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 618
Author(s):  
Paola A. Sanchez-Sanchez ◽  
José Rafael García-González ◽  
Juan Manuel Rúa Ascar

Background: Previous studies of migraine classification have focused on the analysis of brain waves, leading to the development of complex tests that are not accessible to the majority of the population. In the early stages of this pathology, patients tend to go to the emergency services or outpatient department, where timely identification largely depends on the expertise of the physician and continuous monitoring of the patient. However, owing to the lack of time to make a proper diagnosis or the inexperience of the physician, migraines are often misdiagnosed either because they are wrongly classified or because the disease severity is underestimated or disparaged. Both cases can lead to inappropriate, unnecessary, or imprecise therapies, which can result in damage to patients’ health. Methods: This study focuses on designing and testing an early classification system capable of distinguishing between seven types of migraines based on the patient’s symptoms. The methodology proposed comprises four steps: data collection based on symptoms and diagnosis by the treating physician, selection of the most relevant variables, use of artificial neural network models for automatic classification, and selection of the best model based on the accuracy and precision of the diagnosis. Results: The artificial neural network models used provide an excellent classification performance, with accuracy and precision levels >97% and which exceed the classifications made using other model, such as logistic regression, support vector machines, nearest neighbor, and decision trees. Conclusions: The implementation of migraine classification through artificial neural networks is a powerful tool that reduces the time to obtain accurate, reliable, and timely clinical diagnoses.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Yasin Icel ◽  
Mehmet Salih Mamis ◽  
Abdulcelil Bugutekin ◽  
Mehmet Ismail Gursoy

The amount of electric energy produced by photovoltaic panels depends on air temperature, humidity rate, wind velocity, photovoltaic module temperature, and particularly solar radiation. Being aware of the behaviour patterns of the panels to be used in project and planning works regarding photovoltaic applications will set forth a realistic expense form; therefore, erroneous investments will be avoided, and the country budget will benefit from added value. The power ratings obtained from the photovoltaic panels and the environmental factors were measured and recorded for a year by the measurement stations established in three diverse regions (Adiyaman-Malatya-Sanliurfa). In the developed artificial neural network models, the estimation accuracy was 99.94%. Furthermore, by taking the data of the General Directorate of Meteorology as a reference, models of artificial neural networks were developed using the data from Adiyaman province for training; by using Malatya and Sanliurfa as test data, 99.57% estimation accuracy was achieved. With the artificial neural network models developed as a result of the study, the energy efficiency for the photovoltaic energy systems desired to be established by using meteorological parameters such as temperature, humidity, wind, and solar radiation of various regions anywhere in the world can be estimated with high accuracy.


2007 ◽  
Vol 362 (1479) ◽  
pp. 421-430 ◽  
Author(s):  
Sami Merilaita

In this paper, I investigate the use of artificial neural networks in the study of prey coloration. I briefly review the anti-predator functions of prey coloration and describe both in general terms and with help of two studies as specific examples the use of neural network models in the research on prey coloration. The first example investigates the effect of visual complexity of background on evolution of camouflage. The second example deals with the evolutionary choice of defence strategy, crypsis or aposematism. I conclude that visual information processing by predators is central in evolution of prey coloration. Therefore, the capability to process patterns as well as to imitate aspects of predator's information processing and responses to visual information makes neural networks a well-suited modelling approach for the study of prey coloration. In addition, their suitability for evolutionary simulations is an advantage when complex or dynamic interactions are modelled. Since not all behaviours of neural network models are necessarily biologically relevant, it is important to validate a neural network model with empirical data. Bringing together knowledge about neural networks with knowledge about topics of prey coloration would provide a potential way to deepen our understanding of the specific appearances of prey coloration.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 356 ◽  
Author(s):  
Svajone Bekesiene ◽  
Ieva Meidute-Kavaliauskiene ◽  
Vaida Vasiliauskiene

This study considers the usage of multilinear regression and artificial neural network modelling to forecast ozone concentrations with regard to weather-related indicators (wind speed, wind direction, relative humidity and temperature). Initial data were obtained by measuring the meteorological parameters using the PC Radio Weather Station. Ozone concentrations near high-voltage lines were measured using RS1003 and at a 220 m distance using ML9811. Neural network models such as the multilayer perceptron and radial basis function neural networks were constructed. The prognostic capacities of the designed models were assessed by comparing the result data by way of the square of the coefficient of multiple correlations (R2) and mean square error (MSE) values. The number of hidden neurons was optimised by decreasing an error function that recorded the number of units in the hidden layers to the precision of the expanded networks. The neural software IBM SPSS 26v was used for artificial neural network (ANN) modelling. The study demonstrated that the linear regression modelling approach was lacking in its capacity to predict the investigated ozone concentrations by used parameters, whereas the use of an ANN offered more precise outcomes. The conducted tests’ results established the strength of the designed artificial neural network models with irrelevant differences between detected and forecasted data.


2020 ◽  
Vol 4 (2) ◽  
pp. 73
Author(s):  
Sushan Poudel ◽  
Dr. R Anuradha

Speech is one of the most effective way for human and machine to interact. This project aims to build Speech Command Recognition System that is capable of predicting the predefined speech commands. Dataset provided by Google’s TensorFlow and AIY teams is used to implement different Neural Network models which include Convolutional Neural Network and Recurrent Neural Network combined with Convolutional Neural Network. The combination of Convolutional and Recurrent Neural Network outperforms Convolutional Neural Network alone by 8% and achieved 96.66% accuracy for 20 labels.


2012 ◽  
Vol 12 (4) ◽  
pp. 71-74 ◽  
Author(s):  
J. Jakubski ◽  
St. M. Dobosz ◽  
K. Major-Gabryś

Abstract Artificial neural networks are one of the modern methods of the production optimisation. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. The presented investigations were aimed at the selection of the neural network able to predict the active bentonite content in the moulding sand on the basis of this sand properties such as: permeability, compactibility and the compressive strength. Then, the data of selected parameters of new moulding sand were set to selected artificial neural network models. This was made to test the universality of the model in relation to other moulding sands. An application of the Statistica program allowed to select automatically the type of network proper for the representation of dependencies occurring in between the proposed moulding sand parameters. The most advantageous conditions were obtained for the uni-directional multi-layer perception (MLP) network. Knowledge of the neural network sensitivity to individual moulding sand parameters, allowed to eliminate not essential ones.


2019 ◽  
Vol 4 (8) ◽  
pp. 143-146
Author(s):  
Gocha Ugulava

Modern economic science is unthinkable without predicting and planning the prospects for economic life development. There are many different mathematical and statistical tools in the arsenal of scientists as well as practitioners and economists today in purpose of forecasting. To date, one of the most prominent effective tools for data analytics is artificial neural networks. Artificial Neural Network - is a mathematical mod- el created in the likeness of a human neural network, and its software and hardware implementation. We carried out modeling and forecasting of regional economic indicators using the artificial neural network of the three-layer perceptron architecture. The network architecture and neuron settings were automatically formatted through the programming language R and its package - Neuralnet. During the forecasting phase, the data vectors were presented as data frame in five input parameters (DFI, FAI, EMP, BT, CPI), according to the neural network forecast of the regional gross domestic product (RGDP_NN) was calculated. All data are from the Imereti region and are taken from official GeoStat sources. Forecasting was done at the same time scale (2006-2017) to enable us to compare the predicted values with the actual ones to verify the level of fore- cast accuracy. We also tested the results of the neural network in another way - compared to the predicted values using multiple linear regression on the same data. The accuracy of the predicted values calculated by the neural network was quite high, which was not declining but slightly ahead of the accuracy coefficients of the predicted values obtained through linear regression. Also, the predictive values calculated by the neural network with high adequacy and accuracy were compared with actual, existing ones. Presented material shows that the use of artificial neural networks for the prediction of territorial economic indicators is reasonable and justified. Their role in analyzing and predicting indicators that are characterized by nonstationarity, dynamism, lack of a definite trend, periodicity, nonlinear structure is especially increased. It is therefore advisable to apply this method in regional economic studies, in predicting territorial development plans, strategies, targets and indicators.


Sign in / Sign up

Export Citation Format

Share Document