scholarly journals Tension Wood and Opposite Wood in 21 Tropical Rain Forest Species

IAWA Journal ◽  
2006 ◽  
Vol 27 (3) ◽  
pp. 329-338 ◽  
Author(s):  
Bruno Clair ◽  
Julien Ruelle ◽  
Jacques Beauchêne ◽  
Marie Françoise Prévost ◽  
Meriem Fournier

Wood samples were taken from the upper and lower sides of 21 naturally tilted trees from 18 families of angiosperms in the tropical rain forest in French Guyana. The measurement of growth stresses ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile stressed wood on the upper side, called tension wood, and lower tensile stressed wood on the lower side, called opposite wood. Eight species had tension wood fibres with a distinct gelatinous layer (G-layer). The distribution of gelatinous fibres varied from species to species. One of the species, Casearia javitensis (Flacourtiaceae), showed a peculiar multilayered secondary wall in its reaction wood. Comparison between the stress level and the occurrence of the G-layer indicates that the G-layer is not a key factor in the production of high tensile stressed wood.

IAWA Journal ◽  
2006 ◽  
Vol 27 (4) ◽  
pp. 341-376 ◽  
Author(s):  
Julien Ruelle ◽  
Bruno Clair ◽  
Jacques Beauchêne ◽  
Marie Françoise Prévost ◽  
Meriem Fournier

The anatomy of tension wood and opposite wood was compared in 21 tropical rain forest trees from 21 species belonging to 18 families from French Guyana. Wood specimens were taken from the upper and lower sides of naturally tilted trees. Measurement of the growth stress level ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile-stressed wood on the upper side, called tension wood and normally tensile-stressed wood on the lower side, called opposite wood. Quantitative parameters relating to fibres and vessels were measured on transverse sections of both tension and opposite wood to check if certain criteria can easily discriminate the two kinds of wood. We observed a decrease in the frequency of vessels in the tension wood in all the trees studied. Other criteria concerning shape and surface area of the vessels, fibre diameter or cell wall thickness did not reveal any general trend. At the ultrastructural level, we observed that the microfibril angle in the tension wood sample was lower than in opposite wood in all the trees except one (Licania membranacea).


Holzforschung ◽  
2019 ◽  
Vol 73 (2) ◽  
pp. 219-222
Author(s):  
Bruno Charles Dias Soares ◽  
José Tarcísio Lima ◽  
Selma Lopes Goulart ◽  
Claudineia Olímpia de Assis

AbstractTree stems deviating from the vertical position react by the formation of tension wood (TW) or compression wood (CW), which are called in general as reaction wood (RW), in which the cells are modified chemically and anatomically. The focus of the present work is the mechanical behavior of TW in five 37-year-oldEucalyptusspecies, which were grown on a planting area with an average slope of 28% leading to decentralized pith in the trees, which is an unequivocal indication of the presence of RW. TW and opposite wood (OW) samples were isolated and subjected to a compression-parallel-to-grain test. It was observed that TW is less resistant and less stiff than the OW.


2008 ◽  
Vol 24 (3) ◽  
pp. 317-327 ◽  
Author(s):  
Scott A. Parsons ◽  
Robert A. Congdon

Abstract:Soil processes are essential in enabling forest regeneration in disturbed landscapes. Little is known about whether litterfall from dominating pioneer species in secondary rain forest is functionally equivalent to that of mixed rain-forest litter in terms of contribution to soil processes. This study used the litterbag technique to quantify the decomposition and nutrient dynamics of leaf litter characteristic of three wet tropical forest communities in the Paluma Range National Park, Queensland, Australia over 511 d. These were: undisturbed primary rain forest (mixed rain-forest species), selectively logged secondary rain forest (pioneer Alphitonia petriei) and tall open eucalypt forest (Eucalyptus grandis). Mass loss, total N, total P, K, Ca and Mg dynamics of the decaying leaves were determined, and different mathematical models were used to explain the mass loss data. Rainfall and temperature data were also collected from each site. The leaves of A. petriei and E. grandis both decomposed significantly slower in situ than the mixed rain-forest species (39%, 38% and 29% ash-free dry mass remaining respectively). Nitrogen and phosphorus were immobilized, with 182% N and 134% P remaining in E. grandis, 127% N and 132% P remaining in A. petriei and 168% N and 121% P remaining in the mixed rain-forest species. The initial lignin:P ratio and initial lignin:N ratio exerted significant controls on decomposition rates. The exceptionally slow decomposition of the pioneer species is likely to limit soil processes at disturbed tropical rain-forest sites in Australia.


2010 ◽  
Vol 1 (1) ◽  
pp. 6-11
Author(s):  
Thiago Campos Monteiro ◽  
Renato da Silva Vieira ◽  
José Tarcísio Lima ◽  
Edy Eime Pereira Baraúna ◽  
Duam Matosinhos de Carvalho ◽  
...  

The reaction wood is formed in an attempt to remain upright tree in response to the action of forces such as winds, irregular crown or slope of the land that tend to incline it. In hardwoods, as in Eucalyptus, this type of wood is called tension wood and occurs in the region of the stem facing the face of force application. Indicative of the presence of this type of wood is the high shrinkage and basic density compared to normal wood. Once the basic density and shrinkage are parameters for determining the quality of the wood, this study aimed to evaluate the variation of basic density and shrinkage of opposite and tension wood along the radius in four species of Eucalyptus sp. Four tree species Eucalyptus camaldulensis, Eucalyptus maculata, Eucalyptus pilularis and Eucalyptus urophylla, with 32 years of age, were taken from an experimental planting of the Federal University of Lavras. Specimens were made to represent the diametrical variation of the opposite of tension wood in disks cut at the dbh. The results indicate that the properties of radial, tangential and volumetric shrinkage, coefficient of anisotropy and basic density did not differ statistically between the tensionand opposite wood.


Sign in / Sign up

Export Citation Format

Share Document