leaf nitrogen concentration
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 20)

H-INDEX

29
(FIVE YEARS 4)

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6260
Author(s):  
Jie Wang ◽  
Wei Xue ◽  
Xiaojun Shi ◽  
Yangchun Xu ◽  
Caixia Dong

Different cultivars of pear trees are often planted in one orchard to enhance yield for its gametophytic self-incompatibility. Therefore, an accurate and robust modelling method is needed for the non-destructive determination of leaf nitrogen (N) concentration in pear orchards with mixed cultivars. This study proposes a new technique based on in-field visible-near infrared (VIS-NIR) spectroscopy and the Adaboost algorithm initiated with machine learning methods. The performance was evaluated by estimating leaf N concentration for a total of 1285 samples from different cultivars, growth regions, and tree ages and compared with traditional techniques, including vegetation indices, partial least squares regression, singular support vector regression (SVR) and neural networks (NN). The results demonstrated that the leaf reflectance responded to the leaf nitrogen concentration were more sensitive to the types of cultivars than to the different growing regions and tree ages. Moreover, the AdaBoost.RT-BP had the best accuracy in both the training (R2 = 0.96, root mean relative error (RMSE) = 1.03 g kg−1) and the test datasets (R2 = 0.91, RMSE = 1.29 g kg−1), and was the most robust in repeated experiments. This study provides a new insight for monitoring the status of pear trees by the in-field VIS-NIR spectroscopy for better N managements in heterogeneous pear orchards.


2020 ◽  
Vol 12 (19) ◽  
pp. 3237
Author(s):  
Lucas Prado Osco ◽  
José Marcato Junior ◽  
Ana Paula Marques Ramos ◽  
Danielle Elis Garcia Furuya ◽  
Dthenifer Cordeiro Santana ◽  
...  

Under ideal conditions of nitrogen (N), maize (Zea mays L.) can grow to its full potential, reaching maximum plant height (PH). As a rapid and nondestructive approach, the analysis of unmanned aerial vehicles (UAV)-based imagery may be of assistance to estimate N and height. The main objective of this study is to present an approach to predict leaf nitrogen concentration (LNC, g kg−1) and PH (m) with machine learning techniques and UAV-based multispectral imagery in maize plants. An experiment with 11 maize cultivars under two rates of N fertilization was carried during the 2017/2018 and 2018/2019 crop seasons. The spectral vegetation indices (VI) normalized difference vegetation index (NDVI), normalized difference red-edge index (NDRE), green normalized difference vegetation (GNDVI), and the soil adjusted vegetation index (SAVI) were extracted from the images and, in a computational system, used alongside the spectral bands as input parameters for different machine learning models. A randomized 10-fold cross-validation strategy, with a total of 100 replicates, was used to evaluate the performance of 9 supervised machine learning (ML) models using the Pearson’s correlation coefficient (r), mean absolute error (MAE), coefficient of regression (R²), and root mean square error (RMSE) metrics. The results indicated that the random forest (RF) algorithm performed better, with r and RMSE, respectively, of 0.91 and 1.9 g.kg−¹ for LNC, and 0.86 and 0.17 m for PH. It was also demonstrated that VIs contributed more to the algorithm’s performances than individual spectral bands. This study concludes that the RF model is appropriate to predict both agronomic variables in maize and may help farmers to monitor their plants based upon their LNC and PH diagnosis and use this knowledge to improve their production rates in the subsequent seasons.


2020 ◽  
Vol 7 (2) ◽  
pp. 191941
Author(s):  
Jian Yang ◽  
Lin Du ◽  
Wei Gong ◽  
Shuo Shi ◽  
Jia Sun

Leaf nitrogen concentration (LNC) is a major indicator in the estimation of the crop growth status which has been diffusely applied in remote sensing. Thus, it is important to accurately obtain LNC by using passive or active technology. Laser-induced fluorescence can be applied to monitor LNC in crops through analysing the changing of fluorescence spectral information. Thus, the performance of fluorescence spectrum (FS) and first-derivative fluorescence spectrum (FDFS) for paddy rice (Yangliangyou 6 and Manly Indica) LNC estimation was discussed, and then the proposed FS + FDFS was used to monitor LNC by multivariate analysis. The results showed that the difference between FS ( R 2 = 0.781, s.d. = 0.078) and FDFS ( R 2 = 0.779, s.d. = 0.097) for LNC estimation by using the artificial neural network is not obvious. The proposed FS + FDFS can improved the accuracy of LNC estimation to some extent ( R 2 = 0.813, s.d. = 0.051). Then, principal component analysis was used in FS and FDFS, and extracted the main fluorescence characteristics. The results indicated that the proposed FS + FDFS exhibited higher robustness and stability for LNC estimation ( R 2 = 0.851, s.d. = 0.032) than that only using FS ( R 2 = 0.815, s.d. = 0.059) or FDFS ( R 2 = 0.801, s.d. = 0.065).


Sign in / Sign up

Export Citation Format

Share Document