Australian Fundamental Gravity Network Absolute Gravity Survey 2016: Gravity Survey ID: 201691

2017 ◽  
Author(s):  
A. Nakamura
2011 ◽  
Vol 3 (1) ◽  
pp. 43-64
Author(s):  
M. de Angelis ◽  
F. Greco ◽  
A. Pistorio ◽  
N. Poli ◽  
M. Prevedelli ◽  
...  

Abstract. This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.


2020 ◽  
Vol 52 ◽  
pp. 41-54
Author(s):  
Giovanna Berrino ◽  
Giuseppe Ricciardi

Abstract. Since 1981, relative gravity measurements have routinely carried out at the Campi Flegrei caldera, a densely populated area. The gravity network also includes two absolute stations periodically measured with a laboratory absolute gravimeter, which does not permit field measurements. At the end of 2014, the Osservatorio Vesuviano, Section of Napoli of the Istituto Nazionale di Geofisica e Vulcanologia (INGV-OV), acquired a portable absolute gravimeter that allows field operations on outdoor sites. Therefore, in 2015 a dense absolute gravity network was established in Campi Flegrei. This will permit an advanced approach for volcano monitoring. The net consists of 36 stations, 34 of which located inside the caldera and placed upon or very close to gravity stations belonging to the relative network. Five surveys were carried out on June 2015, on February and November 2017, on October 2018 and on October 2019. The comparison with height changes suggests that significant Δg are partly due to the uplift occurred over the same time intervals and mostly to shallow processes associated to the dynamic of the local hydrothermal system. The comparison with the gradients observed during the last large uplift (1982–1984) and the following subsidence (1985–2003) confirms this observation. These results suggest that the present activity may be due to a transient or pulsating phenomenon as the alternating recharge/discharge of fluids in the surface hydrothermal system. Gravity changes detected by absolute measurements are in good agreement with those obtained by relative ones, and confirms the feasibility of this methodology for volcano monitoring. Finally, they also encourage replacing the relative networks with absolute ones, with all the consequent advantages.


1983 ◽  
Vol 88 (B9) ◽  
pp. 7495-7502 ◽  
Author(s):  
M. A. Zumberge ◽  
J. E. Faller ◽  
J. Gschwind

2002 ◽  
Author(s):  
J. M. Brown ◽  
F. J. Klopping ◽  
D. van Westrum ◽  
T. M. Niebauer ◽  
R. Billson ◽  
...  

2013 ◽  
Vol 56 (4) ◽  
Author(s):  
Giovanna Berrino ◽  
Vincenzo d’Errico ◽  
Giuseppe Ricciardi

<p>Since 1982, high precision gravity measurements have been routinely carried out on Mt. Vesuvius. The gravity network consists of selected sites most of them coinciding with, or very close to, leveling benchmarks to remove the effect of the elevation changes from gravity variations. The reference station is located in Napoli, outside the volcanic area. Since 1986, absolute gravity measurements have been periodically made on a station on Mt. Vesuvius, close to a permanent gravity station established in 1987, and at the reference in Napoli. The results of the gravity measurements since 1982 are presented and discussed. Moderate gravity changes on short-time were generally observed. On long-term significant gravity changes occurred and the overall fields displayed well defined patterns. Several periods of evolution may be recognized. Gravity changes revealed by the relative surveys have been confirmed by repeated absolute measurements, which also confirmed the long-term stability of the reference site. The gravity changes over the recognized periods appear correlated with the seismic crises and with changes of the tidal parameters obtained by continuous measurements. The absence of significant ground deformation implies masses redistribution, essentially density changes without significant volume changes, such as fluids migration at the depth of the seismic foci, i.e. at a few kilometers. The fluid migration may occur through pre-existing geological structures, as also suggested by hydrological studies, and/or through new fractures generated by seismic activity. This interpretation is supported by the analyses of the spatial gravity changes overlapping the most significant and recent seismic crises.</p>


Geophysics ◽  
2008 ◽  
Vol 73 (6) ◽  
pp. WA163-WA171 ◽  
Author(s):  
John F. Ferguson ◽  
F. J. Klopping ◽  
Tianyou Chen ◽  
John E. Seibert ◽  
Jennifer L. Hare ◽  
...  

The 4D microgravity method is becoming a mature technology. A project to develop practical measurement and interpretation techniques was conducted at Prudhoe Bay, Alaska, from 1994 through 2002. Beginning in 2003 these techniques have been systematically applied to monitor a waterflood in the gas cap of the Prudhoe Bay reservoir. Approximately 300 stations in a [Formula: see text] area are reoccupied in each survey year with sub-[Formula: see text] precision absolute gravity and centimeter precision Global Positioning System (GPS) geodetic measurements. The 4D gravity measured over epochs 2005–2003, 2006–2003, and 2007–2003 has been successfully modeled to track the mass of water injected since late in 2002. A new and improved version of the A-10 field-portable absolute gravity meter was developed in conjunction with this project and has proven to be a key element in the success of the 4D methodology. The use of an absolute gravity meter in a field survey of this magnitude is unprecedented. There are substantial differences between a 4D absolute microgravity survey and a conventional gravity survey in terms of station occupation procedures, GPS techniques, and the 4D elevation correction. We estimate that the overall precision of the 4D gravity signal in each epoch is less than [Formula: see text].


2008 ◽  
Author(s):  
Jared D. Abraham ◽  
Eric D. Anderson ◽  
Benjamin J. Drenth ◽  
Carol A. Finn ◽  
Robert P. Kucks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document