Airway Remodelling Increases Ventilation Heterogeneity In Peripheral Airways In Asthma

Author(s):  
Jessica A. Kermode ◽  
Nathan J. Brown ◽  
Kate M. Hardaker ◽  
Claude S. Farah ◽  
Norbert Berend ◽  
...  
2012 ◽  
Vol 113 (6) ◽  
pp. 958-966 ◽  
Author(s):  
Catherine E. Farrow ◽  
Cheryl M. Salome ◽  
Benjamin E. Harris ◽  
Dale L. Bailey ◽  
Elizabeth Bailey ◽  
...  

The regional pattern and extent of airway closure measured by three-dimensional ventilation imaging may relate to airway hyperresponsiveness (AHR) and peripheral airways disease in asthmatic subjects. We hypothesized that asthmatic airways are predisposed to closure during bronchoconstriction in the presence of ventilation heterogeneity and AHR. Fourteen asthmatic subjects (6 women) underwent combined ventilation single photon emission computed tomography/computed tomography scans before and after methacholine challenge. Regional airway closure was determined by complete loss of ventilation following methacholine challenge. Peripheral airway disease was measured by multiple-breath nitrogen washout from which Scond (index of peripheral conductive airway abnormality) was derived. Relationships between airway closure and lung function were examined by multiple-linear regression. Forced expiratory volume in 1 s was 87.5 ± 15.8% predicted, and seven subjects had AHR. Methacholine challenge decreased forced expiratory volume in 1 s by 23 ± 5% and increased nonventilated volume from 16 ± 4 to 29 ± 13% of computed tomography lung volume. The increase in airway closure measured by nonventilated volume correlated independently with both Scond (partial R2 = 0.22) and with AHR (partial R2 = 0.38). The extent of airway closure induced by methacholine inhalation in asthmatic subjects is greater with increasing peripheral airways disease, as measured by ventilation heterogeneity, and with worse AHR.


Author(s):  
Amy G. Nuttall ◽  
Caroline S. Beardsmore ◽  
Erol A. Gaillard

AbstractSmall airway disease, characterised by ventilation heterogeneity (VH), is present in a subgroup of patients with asthma. Ventilation heterogeneity can be measured using multiple breath washout testing. Few studies have been reported in children. We studied the relationship between VH, asthma severity, and spirometry in a cross-sectional observational cohort study involving children with stable mild-moderate and severe asthma by GINA classification and a group of healthy controls. Thirty-seven participants aged 5–16 years completed multiple breath nitrogen washout (MBNW) testing (seven controls, seven mild-moderate asthma, 23 severe asthma). The lung clearance index (LCI) was normal in control and mild-moderate asthmatics. LCI was abnormal in 5/23 (21%) of severe asthmatics. The LCI negatively correlated with FEV1z-score.Conclusion: VH is present in asthmatic children and appears to be more common in severe asthma. The LCI was significantly higher in the cohort of children with severe asthma, despite no difference in FEV1 between the groups. This supports previous evidence that LCI is a more sensitive marker of airway disease than FEV1. MBNW shows potential as a useful tool to assess children with severe asthma and may help inform clinical decisions. What is Known:• Increased ventilation heterogeneity is present in some children with asthma• Spirometry is not sensitive enough to detect small airway involvement in asthma What is New• Lung clearance index is abnormal in a significant subgroup of children with severe asthma but rarely in children with mild-moderate asthma• Our data suggests that LCI monitoring should be considered in children with severe asthma


Respiration ◽  
2021 ◽  
pp. 1-7
Author(s):  
Roberta Pisi ◽  
Marina Aiello ◽  
Luigino Calzetta ◽  
Annalisa Frizzelli ◽  
Veronica Alfieri ◽  
...  

<b><i>Background:</i></b> The ventilation heterogeneity (VH) is reliably assessed by the multiple-breath nitrogen washout (MBNW), which provides indices of conductive (<i>S</i><sub>cond</sub>) and acinar (<i>S</i><sub>acin</sub>) VH as well as the lung clearance index (LCI), an index of global VH. VH can be alternatively measured by the poorly communicating fraction (PCF), that is, the ratio of total lung capacity by body plethysmography to alveolar volume from the single-breath lung diffusing capacity measurement. <b><i>Objectives:</i></b> Our objective was to assess VH by PCF and MBNW in patients with asthma and with COPD and to compare PCF and MBNW parameters in both patient groups. <b><i>Method:</i></b> We studied 35 asthmatic patients and 45 patients with COPD. Each patient performed spirometry, body plethysmography, diffusing capacity, and MBNW test. <b><i>Results:</i></b> Compared to COPD patients, asthmatics showed a significantly lesser degree of airflow obstruction and lung hyperinflation. In asthmatic patients, both PCF and LCI and <i>S</i><sub>acin</sub> values were significantly lower than the corresponding ones of COPD patients. In addition, in both patient groups, PCF showed a positive correlation with LCI (<i>p</i> &#x3c; 0.05) and <i>S</i><sub>acin</sub> (<i>p</i> &#x3c; 0.05), but not with <i>S</i><sub>cond</sub>. Lastly, COPD patients with PCF &#x3e;30% were highly likely to have a value ≥2 of the mMRC dyspnea scale. <b><i>Conclusions:</i></b> These results showed that PCF, a readily measure derived from routine pulmonary function testing, can provide a comprehensive measure of both global and acinar VH in asthma and in COPD patients and can be considered as a comparable tool to the well-established MBNW technique.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-214717
Author(s):  
Frederik Trinkmann ◽  
Máté Maros ◽  
Katharina Roth ◽  
Arne Hermanns ◽  
Julia Schäfer ◽  
...  

BackgroundMultiple breath washout (MBW) using sulfur hexafluoride (SF6) has the potential to reveal ventilation heterogeneity which is frequent in patients with obstructive lung disease and associated small airway dysfunction. However, reference data are scarce for this technique and mostly restricted to younger cohorts. We therefore set out to evaluate the influence of anthropometric parameters on SF6-MBW reference values in pulmonary healthy adults.MethodsWe evaluated cross-sectional data from 100 pulmonary healthy never-smokers and smokers (mean 51 (SD 20), range 20–88 years). Lung clearance index (LCI), acinar (Sacin) and conductive (Scond) ventilation heterogeneity were derived from triplicate SF6-MBW measurements. Global ventilation heterogeneity was calculated for the 2.5% (LCI2.5) and 5% (LCI5) stopping points. Upper limit of normal (ULN) was defined as the 95th percentile.ResultsAge was the only meaningful parameter influencing SF6-MBW parameters, explaining 47% (CI 33% to 59%) of the variance in LCI, 32% (CI 18% to 47%) in Sacin and 10% (CI 2% to 22%) in Scond. Mean LCI increases from 6.3 (ULN 7.4) to 8.8 (ULN 9.9) in subjects between 20 and 90 years. Smoking accounted for 2% (CI 0% to 8%) of the variability in LCI, 4% (CI 0% to 13%) in Sacin and 3% (CI 0% to 13%) in Scond.ConclusionSF6-MBW outcome parameters showed an age-dependent increase from early adulthood to old age. The effect was most pronounced for global and acinar ventilation heterogeneity and smaller for conductive ventilation heterogeneity. No influence of height, weight and sex was seen. Reference values can now be provided for all important SF6-MBW outcome parameters over the whole age range.Trial registration numberNCT04099225.


Respirology ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 1084-1085 ◽  
Author(s):  
Chris Grainge ◽  
Jin‐Ah Park
Keyword(s):  

2008 ◽  
Vol 104 (4) ◽  
pp. 1094-1100 ◽  
Author(s):  
Sylvia Verbanck ◽  
Daniel Schuermans ◽  
Sophie Van Malderen ◽  
Walter Vincken ◽  
Bruce Thompson

It has long been assumed that the ventilation heterogeneity associated with lung disease could, in itself, affect the measurement of carbon monoxide transfer factor. The aim of this study was to investigate the potential estimation errors of carbon monoxide diffusing capacity (DlCO) measurement that are specifically due to conductive ventilation heterogeneity, i.e., due to a combination of ventilation heterogeneity and flow asynchrony between lung units larger than acini. We induced conductive airway ventilation heterogeneity in 35 never-smoker normal subjects by histamine provocation and related the resulting changes in conductive ventilation heterogeneity (derived from the multiple-breath washout test) to corresponding changes in diffusing capacity, alveolar volume, and inspired vital capacity (derived from the single-breath DlCO method). Average conductive ventilation heterogeneity doubled ( P < 0.001), whereas DlCO decreased by 6% ( P < 0.001), with no correlation between individual data ( P > 0.1). Average inspired vital capacity and alveolar volume both decreased significantly by, respectively, 6 and 3%, and the individual changes in alveolar volume and in conductive ventilation heterogeneity were correlated ( r = −0.46; P = 0.006). These findings can be brought in agreement with recent modeling work, where specific ventilation heterogeneity resulting from different distributions of either inspired volume or end-expiratory lung volume have been shown to affect DlCO estimation errors in opposite ways. Even in the presence of flow asynchrony, these errors appear to largely cancel out in our experimental situation of histamine-induced conductive ventilation heterogeneity. Finally, we also predicted which alternative combination of specific ventilation heterogeneity and flow asynchrony could affect DlCO estimate in a more substantial fashion in diseased lungs, irrespective of any diffusion-dependent effects.


Sign in / Sign up

Export Citation Format

Share Document