A Novel Oxidant Signalling Paradigm: Sphingosylphosphorylcholine Potentiates Calcium Entry In Vascular Smooth Muscle Via NADPH Oxidase, Reactive Oxygen Species And P38 MAP Kinase

Author(s):  
Jeremy P. Ward ◽  
Justin Kua ◽  
Greg A. Knock ◽  
philip I. aaronson ◽  
Vladimir A. Snetkov
Toxins ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 360 ◽  
Author(s):  
João Moraes ◽  
Genilson Rodrigues ◽  
Vany Nascimento-Silva ◽  
Mariana Renovato-Martins ◽  
Markus Berger ◽  
...  

2009 ◽  
Vol 587 (13) ◽  
pp. 3363-3373 ◽  
Author(s):  
Melissa A. Chambers ◽  
Jennifer S. Moylan ◽  
Jeffrey D. Smith ◽  
Laurie J. Goodyear ◽  
Michael B. Reid

2010 ◽  
Vol 3 (2) ◽  
pp. 109-121 ◽  
Author(s):  
Kurt M. Sowers ◽  
Melvin R. Hayden

Calcific uremic arteriolopathy (CUA)/calciphylaxis is an important cause of morbidity and mortality in patients with chronic kidney disease requiring renal replacement. Once thought to be rare, it is being increasingly recognized and reported on a global scale. The uremic milieu predisposes to multiple metabolic toxicities including increased levels of reactive oxygen species and inflammation. Increased oxidative stress and inflammation promote this arteriolopathy by adversely affecting endothelial function resulting in a prothrombotic milieu and significant remodeling effects on vascular smooth muscle cells. These arteriolar pathological effects include intimal hyperplasia, inflammation, endovascular fibrosis and vascular smooth muscle cell apoptosis and differentiation into bone forming osteoblast-like cells resulting in medial calcification. Systemic factors promoting this vascular condition include elevated calcium, parathyroid hormone and hyperphosphatemia with consequent increases in the calcium × phosphate product. The uremic milieu contributes to a marked increased in upstream reactive oxygen species—oxidative stress and subsequent downstream increased inflammation, in part, via activation of the nuclear transcription factor NFκB and associated downstream cytokine pathways. Consitutive anti-calcification proteins such as Fetuin-A and matrix GLA proteins and their signaling pathways may be decreased, which further contributes to medial vascular calcification. The resulting clinical entity is painful, debilitating and contributes to the excess morbidity and mortality associated with chronic kidney disease and end stage renal disease. These same histopathologic conditions also occur in patients without uremia and therefore, the term calcific obliterative arteriolopathy could be utilized in these conditions.


Sign in / Sign up

Export Citation Format

Share Document