scholarly journals Interaction of Bone Marrow Derived Macrophages with Extracellular Matrix Proteins Regulates Proliferation and Differentiation

Author(s):  
S. Soberanes ◽  
J. Chen ◽  
P. Milenkovich ◽  
Z. Lu ◽  
L. Sichizya ◽  
...  
Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 3125-3132 ◽  
Author(s):  
LJ Bendall ◽  
K Kortlepel ◽  
DJ Gottlieb

Abstract Acute myeloid leukemia (AML) cells respond to exogenous stimulation from myeloid growth factors that may be secreted by cells of the bone marrow (BM) stroma and retained by glycosaminoglycans in the extracellular matrix. We have analyzed the capacity of malignant cells from patients with AML to maintain close proximity to sites of growth factor production and retention by binding to BM stromal elements, including fibroblasts and extracellular matrix proteins. Leukemic cells from all cases of AML adhered to BM fibroblast (BMF) monolayers (mean +/- standard error [SE] percentage binding, 30.9% +/- 2.5%; n = 23) and to fibronectin and laminin (mean +/- SE percentage binding, 28.0% +/- 4.1% [n = 11] and 21.5% +/- 2.3% [n = 8], respectively). Binding to bovine and human collagen type 1, vitronectin, hyaluronic acid, and albumin was minimal. Analysis of binding mechanisms indicated that very late antigen-4 (VLA-4) and VLA-5 were responsible for AML cell binding to fibronectin. Binding to laminin could be inhibited by antibody to the alpha chain of VLA-6. In contrast, AML cell adhesion to BMF monolayers was not impaired by blocking antibodies to either beta 1 or beta 2 integrins used alone, although the combination of anti-CD11/CD18 and anti-VLA-4 inhibited binding in more than 50% of cases. When anti- VLA-5 was added in these cases, mean +/- SE inhibition of binding of 45.5% +/- 9.1% (P < .001) was observed. Binding of AML cells to extracellular matrix proteins fibronectin and laminin is predominantly beta 1-integrin-dependent, but AML cell adhesion to BMF relies on the simultaneous involvement of beta 1 and beta 2 integrins as well as other currently unrecognized ligands.


2007 ◽  
Vol 265 (6) ◽  
pp. 669-674 ◽  
Author(s):  
Tsunehisa Ohno ◽  
Shigeru Hirano ◽  
Shin-ichi Kanemaru ◽  
Masaru Yamashita ◽  
Hiroo Umeda ◽  
...  

2015 ◽  
Vol 63 (5) ◽  
pp. 377-384 ◽  
Author(s):  
Marta Pokrywczynska ◽  
Marzena Anna Lewandowska ◽  
Sandra Krzyzanowska ◽  
Arkadiusz Jundzill ◽  
Marta Rasmus ◽  
...  

Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 540-547 ◽  
Author(s):  
KS Zuckerman ◽  
MS Wicha

Abstract We have studied the deposition of extracellular matrix proteins in the adherent stroma of long-term murine bone marrow cultures. Stable hematopoiesis was maintained for greater than 12 wk. At selected intervals, culture dishes were sacrificed by removing all nonadherent cells and air drying the dishes. The adherent stromal layer was analyzed for the presence of intracellular and extracellular collagen, fibronectin, and laminin using double immunofluorescent staining with specific antisera against these matrix components. In cultures examined during the first 2 wk, large numbers of stromal cells contained collagen, fibronectin, and laminin. Over the next 2 wk, an extensive extracellular network of fibronectin, laminin, and collagen was deposited on the dishes, which persisted throughout the life of the cultures. In contrast to a previous report, we detected substantial numbers of endothelial cells by means of immunofluorescent staining of stromal cells with antisera to type IV collagen, laminin, and factor VIII antigen. Although deposition of these extracellular matrix proteins coincides with onset of active hematopoietic cell production, the relative roles of the stromal cells and the extracellular matrix in supporting hematopoiesis in murine bone marrow cell cultures remain to be determined.


2002 ◽  
Vol 63 (4) ◽  
pp. 400-407 ◽  
Author(s):  
François Cornet ◽  
Karine Anselme ◽  
Thierry Grard ◽  
Myriam Rouahi ◽  
Benoit Noël ◽  
...  

Blood ◽  
1983 ◽  
Vol 61 (3) ◽  
pp. 540-547 ◽  
Author(s):  
KS Zuckerman ◽  
MS Wicha

We have studied the deposition of extracellular matrix proteins in the adherent stroma of long-term murine bone marrow cultures. Stable hematopoiesis was maintained for greater than 12 wk. At selected intervals, culture dishes were sacrificed by removing all nonadherent cells and air drying the dishes. The adherent stromal layer was analyzed for the presence of intracellular and extracellular collagen, fibronectin, and laminin using double immunofluorescent staining with specific antisera against these matrix components. In cultures examined during the first 2 wk, large numbers of stromal cells contained collagen, fibronectin, and laminin. Over the next 2 wk, an extensive extracellular network of fibronectin, laminin, and collagen was deposited on the dishes, which persisted throughout the life of the cultures. In contrast to a previous report, we detected substantial numbers of endothelial cells by means of immunofluorescent staining of stromal cells with antisera to type IV collagen, laminin, and factor VIII antigen. Although deposition of these extracellular matrix proteins coincides with onset of active hematopoietic cell production, the relative roles of the stromal cells and the extracellular matrix in supporting hematopoiesis in murine bone marrow cell cultures remain to be determined.


Sign in / Sign up

Export Citation Format

Share Document