Phylogenetic relationships within the superfamily Anisopodoidea (Diptera: Nematocera), with description of new Jurassic species

2019 ◽  
Vol 2 (2) ◽  
pp. 119-139 ◽  
Author(s):  
MACIEJ WOJTOŃ ◽  
IWONA KANIA ◽  
WIESŁAW KRZEMIŃSKI ◽  
DONG REN

New species of Jurassic Protorhyphidae: Protorhyphus lukashevichae sp. nov., Protorhyphus jurassicus sp. nov., and Anisopodidae: Mesorhyphus blagoderovi sp. nov. from Daohugou, China, are described and illustrated. Phylogenetic relationships and evolution within the Anisopodoidea are analyzed and discussed. The oldest Anisopodoidea appeared in the Triassic and fossil record indicate that they were most numerous in Jurassic and in the Cretaceous.

2020 ◽  
Vol 157 (7) ◽  
pp. 1149-1175 ◽  
Author(s):  
Hiroshi Nakamine ◽  
Shûhei Yamamoto ◽  
Yui Takahashi

AbstractThorny lacewings (Rhachiberothidae) are currently distributed only within Africa, whereas they are prevalent in the fossil record of various Cretaceous ambers across the Northern Hemisphere, with a handful of the fossil records from some Eocene European ambers. Four rhachiberothid species in four extinct genera are known from the mid-Cretaceous amber of northern Myanmar. Here, we report further examples of the remarkable palaeodiversity of this group from the same amber deposit, adding the four new fossil genera and seven new species: Acanthoberotha cuspis gen. et sp. nov., Astioberotha falcipes gen. et sp. nov., Stygioberotha siculifera gen. et sp. nov., Uranoberotha chariessa gen. et sp. nov., Creagroparaberotha cuneata sp. nov., Micromantispa galeata sp. nov. and M. spicata sp. nov. Based on a series of well-preserved specimens, we discuss the fine details of the raptorial forelegs and genital segments, which may be important for elucidating the phylogenetic relationships among genera. Our findings reveal an unexpectedly diverse assemblage of thorny lacewings in the Cretaceous System, highlighting the morphologically diverse rhachiberothids in Burmese amber. The discovery of seven additional rhachiberothid species in Myanmar amber suggests the potential for much higher diversity and abundance of the Cretaceous rhachiberothids than previously documented. Furthermore, morphological variation in the raptorial forelegs was found to be extremely diverse among the Burmese amber paraberothines, especially in terms of the size, number and shape of spines (or spine-like setae) on the inner edges of protibia, and the morphological structure of the probasitarsus.


2019 ◽  
Vol 94 (2) ◽  
pp. 202-216
Author(s):  
Valerio Gennari ◽  
Roberto Rettori

AbstractAmong Permian smaller foraminifers, the genus Dagmarita is one of the most studied due to its worldwide distribution. The detailed study of the Zal (NW Iran) and Abadeh (Central Iran) stratigraphic sections led to redescription of the genus Dagmarita and its taxonomic composition. In Dagmarita, a peculiar generic morphological character, represented by a secondary valvular projection, has been detected for the first time among globivalvulinid foraminifers. The phylogeny of Dagmarita, and in particular its ancestor Sengoerina, is discussed and the new species, D. ghorbanii n. sp. and D. zalensis n. sp., are introduced. Analogies and differences among all the species belonging to Dagmarita are highlighted and morphological features of the new taxa are shown in 3D reconstructions, useful for understanding differently oriented sections of the specimens in thin section.UUID: http://zoobank.org/3d8eb14c-7757-4cbd-877c-4bacd2d156da


2015 ◽  
Vol 29 (2) ◽  
pp. 105 ◽  
Author(s):  
Mindi Summers ◽  
Fredrik Pleijel ◽  
Greg W. Rouse

Phylogenetic relationships within Hesionidae Grube, 1850 are assessed via maximum parsimony and maximum likelihood analyses of mitochondrial (cytochrome c oxidase subunit I and 16S rRNA) and nuclear (18S rRNA, and 28S rRNA) data. The analyses are based on 42 hesionid species; six of these being new species that are described here. The new species, all from deep (>200 m depth) benthic environments (including whale falls) in the eastern Pacific, are Gyptis shannonae, sp. nov., Neogyptis julii, sp. nov., Sirsoe sirikos, sp. nov., Vrijenhoekia ketea, sp. nov., Vrijenhoekia falenothiras, sp. nov., and Vrijenhoekia ahabi, sp. nov. The molecular divergence among the new members of Vrijenhoekia is pronounced enough to consider them cryptic species, even though we cannot distinguish among them morphologically. Our results also showed that the subfamily Hesioninae Grube, 1850, as traditionally delineated, was paraphyletic. We thus restrict Hesioninae to include only Hesionini Grube, 1850 and refer the remaining members to Psamathinae Pleijel, 1998. The present study increases the number of hesionid species associated with whale falls from one to six and markedly increases the number of described deep-sea hesionid taxa. There appear to have been multiple colonisations of the deep sea from shallow waters by hesionids, though further sampling is warranted.


2004 ◽  
Vol 175 (5) ◽  
pp. 525-533 ◽  
Author(s):  
Jean-Renaud Boisserie

Abstract A new species of Hippopotamidae, Hexaprotodon dulu nov. sp., was discovered in the Middle Awash valley, Afar, Ethiopia. It was found in the Sagantole Formation, within volcaniclastic beds aged between 5.2 Ma and 4.9 Ma (40Ar/39Ar). It is therefore the oldest hippo species described as yet from Ethiopia. This hexaprotodont hippo exhibits a general morphology that is primitive, close in that respect to other Mio-Pliocene forms. However, its cranium and dentition display a distinctive association of measurements and features. This new species increases the hippo fossil record in East Africa. It also reinforces the hypothesis of hippo endemism in each African basin as early as the basal Pliocene.


Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 851-854 ◽  
Author(s):  
Mehrdad Hajibabaei ◽  
Gregory AC Singer ◽  
Donal A Hickey

DNA barcoding has been recently promoted as a method for both assigning specimens to known species and for discovering new and cryptic species. Here we test both the potential and the limitations of DNA barcodes by analysing a group of well-studied organisms—the primates. Our results show that DNA barcodes provide enough information to efficiently identify and delineate primate species, but that they cannot reliably uncover many of the deeper phylogenetic relationships. Our conclusion is that these short DNA sequences do not contain enough information to build reliable molecular phylogenies or define new species, but that they can provide efficient sequence tags for assigning unknown specimens to known species. As such, DNA barcoding provides enormous potential for use in global biodiversity studies.Key words: DNA barcoding, species identification, primate, biodiversity.


Sign in / Sign up

Export Citation Format

Share Document