scholarly journals Taxonomy and phylogeny of Cercospora spp. from Northern Thailand

Phytotaxa ◽  
2015 ◽  
Vol 233 (1) ◽  
pp. 27 ◽  
Author(s):  
JEERAPA NGUANHOM ◽  
RATCHADAWAN CHEEWANGKOON ◽  
JOHANNES Z. GROENEWALD ◽  
UWE BRAUN ◽  
CHAIWAT TO-ANUN ◽  
...  

The genus Cercospora represents a group of important plant pathogenic fungi with a wide geographic distribution, being commonly associated with leaf spots on a broad range of plant hosts. The goal of the present study was to conduct a morphological and molecular phylogenetic analysis of the Cercospora spp. occurring on various plants growing in Northern Thailand, an area with a tropical savannah climate, and a rich diversity of vascular plants. Sixty Cercospora isolates were collected from 29 host species (representing 16 plant families). Partial nucleotide sequence data for two gene loci (ITS and cmdA), were generated for all isolates. Results from this study indicate that members of the genus Cercospora vary regarding host specificity, with some taxa having wide host ranges, and others being host-specific. Based on cultural, morphological and phylogenetic data, four new species of Cercospora could be identified: C. glycinicola (from Glycine max), C. cyperacearum and C. cyperina (from Cyperus alternifolius), and C. musigena (from Musa sp.). The most common Cercospora sp. found in Northern Thailand was C. cf. malloti, which occurred on a wide host range. Several collections could not be resolved to species level due to the lack of reference cultures and DNA data for morphologically similar species. Further collections from other countries are needed to help resolve the taxonomy of some species complexes occurring on various plant hosts in Thailand.

Phytotaxa ◽  
2016 ◽  
Vol 278 (3) ◽  
pp. 212
Author(s):  
ZUCHEN LIU ◽  
UWE BRAUN ◽  
PEDRO W. CROUS ◽  
JING SI ◽  
YING ZHANG

Cercosporoid fungi include a large number of mostly plant pathogenic fungi with a wide geographic distribution, being usually associated with leaf spots on a broad range of plant hosts. Here we initiate a series of studies on Chinese cercosporoid fungi, focussing on the identification of some common, rare and new plant diseases caused by these leaf-spotting ascomycetes. The aim of the series is to resolve the taxonomy and DNA phylogeny of this important group of phytopathogens in China. In this study, nine isolates of cercosporoid fungi were collected from five host species. Partial nucleotide sequence data of four gene loci (ITS, LSU, TUB and tef1-α rDNA) were generated for all isolates. Based on morphological characters in vivo and in vitro and phylogenetic data, a new species, Pseudocercospora pauciseptata (on living leaves of Pyracantha fortuneana), is introduced including a detailed description, illustration and comparison with similar species. In addition, Passalora circumscissa, Pseudocercospora cercidis-chinensis, P. lindericola, and P. prunicola are described, illustrated and phylogenetically characterized. Cerasus pseudocerasus represents a new host record for Passalora circumscissa in China, while Lindera reflexa is a new host for P. lindericola.


Webbia ◽  
2021 ◽  
Vol 76 (2) ◽  
pp. 195-202
Author(s):  
Propa Joy R. Santor ◽  
Duane Dominic B. Santiago ◽  
Conrado Joshua V. Mataga ◽  
Elyjha S. Gabriel ◽  
Grecebio Jonathan D. Alejandro

Hedyotis hamiguitanensis, from Mt. Hamiguitan, Davao Oriental, Philippines, is described, illustrated, and compared with two similar species, H. whiteheadii and H. schlechteri. This species is distinguished from congeneric Philippine species by its 5–12 cm long, compound, umbellate inflorescences, pendulous flowers, lanceolate to oblanceolate, thick, scabrid leaf blades with revolute margins. Its phylogenetic systematic position within the tribe Spermococeae is determined with a phylogenetic analysis using chloroplast (rps16, petD) and nuclear ribosomal (ITS, ETS) nucleotide sequence data.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1379-1379 ◽  
Author(s):  
K. N. Conner ◽  
A. K. Hagan ◽  
L. Zhang

Target spot symptoms were first observed on dryland and irrigated cotton (Gossypium hirsutum L.) statewide in Alabama in 2011. Leaf spots first appeared in the lower canopy and spread upward through the canopy toward the shoot tips. Individual leaf spots were roughly circular, formed concentric rings of alternating light and dark brown bands, and were up to 10 mm in diameter. Leaves with multiple lesions senesced prematurely. In 2012, target spot symptoms were observed as early as 68 days after planting in Tallapoosa County, Alabama. The possible combination of early disease onset and frequent showers/irrigation triggered rapid premature defoliation in some fields in excess of 75% in susceptible cultivars (Phytogen 499). Estimated yield losses in select cultivars (Deltapine 1050 and Phytogen 499) exceeded 336 kg/ha seed cotton. In 2012, symptomatic leaves were obtained from two separate locations in Alabama (Baldwin and Tallapoosa counties). The fungus was isolated from lesions by single spores plated on antibiotic V8 agar (1) and incubated at 21°C for 2 weeks under 12-h light cycles. Conidiophores arising from the gray, flocculose colonies were simple, erect, cylindrical, brown or olivaceous, unbranched, with two to seven septa. Conidia were borne singly, ranging from subhyaline to olivaceous, obclavate to cylindrical, straight to slightly curved, contained 4 to 15 pseudosepta, and were 50 to 209 μm long and 7 to 15 μm wide. These characteristics were consistent with the original description of Corynespora cassiicola on cotton (2). The internal transcribed spacer region (ITS) of two isolates, one representing each location, was amplified using primers 2234c and 3126t targeting a 550-bp region of the ITS1, 5.8S rRNA gene, and ITS2 (3). Sequences revealed 99% similarity to C. cassiicola in NCBI (Accession Nos. AY238606 and JQ717069). In greenhouse pathogenicity tests, 10 cotton seedlings (Phytogen 499) were inoculated by spraying a fungal suspension (2 × 104 spores/ml) of each of the two isolates prepared from 2-week-old cultures until runoff. Controls were inoculated with sterile water. Cotton seedlings were incubated in a moist chamber at 21°C for 72 h. All plants inoculated with the fungus developed leaf spot symptoms in 6 days. The fungus was reisolated from five inoculated plants. DNA was extracted from each isolate, amplified using primer pair 2234c/3126t, and sequenced. Sequences (550-bp) from all isolates shared 99% similarity to other C. cassiicola sequences in GenBank (Accession Nos. AY238606 and JQ717069). Nucleotide sequence data reported are available in GenBank under Accession Nos. KC544017 to 23. This pathogen has been reported previously to be economically important on a number of other hosts. To our knowledge, this is the first report of C. cassiicola on cotton in Alabama. Given the increasing prevalence of this disease in Alabama, its confirmation is a significant step toward developing management recommendations for growers. References: (1) L. J. Dixon et al. Phytopathology 99:1015, 2009. (2) J. P. Jones. Phytopathology 51:305, 1961. (3) J. Sequerra et al. Mycol. Res. 101:465, 1997.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 477-477
Author(s):  
Leah K Treffer ◽  
Edward S Rice ◽  
Anna M Fuller ◽  
Samuel Cutler ◽  
Jessica L Petersen

Abstract Domestic yak (Bos grunniens) are bovids native to the Asian Qinghai-Tibetan Plateau. Studies of Asian yak have revealed that introgression with domestic cattle has contributed to the evolution of the species. When imported to North America (NA), some hybridization with B. taurus did occur. The objective of this study was to use mitochondrial (mt) DNA sequence data to better understand the mtDNA origin of NA yak and their relationship to Asian yak and related species. The complete mtDNA sequence of 14 individuals (12 NA yak, 1 Tibetan yak, 1 Tibetan B. indicus) was generated and compared with sequences of similar species from GeneBank (B. indicus, B. grunniens (Chinese), B. taurus, B. gaurus, B. primigenius, B. frontalis, Bison bison, and Ovis aries). Individuals were aligned to the B. grunniens reference genome (ARS_UNL_BGru_maternal_1.0), which was also included in the analyses. The mtDNA genes were annotated using the ARS-UCD1.2 cattle sequence as a reference. Ten unique NA yak haplotypes were identified, which a haplotype network separated into two clusters. Variation among the NA haplotypes included 93 nonsynonymous single nucleotide polymorphisms. A maximum likelihood tree including all taxa was made using IQtree after the data were partitioned into twenty-two subgroups using PartitionFinder2. Notably, six NA yak haplotypes formed a clade with B. indicus; the other four haplotypes grouped with B. grunniens and fell as a sister clade to bison, gaur and gayal. These data demonstrate two mitochondrial origins of NA yak with genetic variation in protein coding genes. Although these data suggest yak introgression with B. indicus, it appears to date prior to importation into NA. In addition to contributing to our understanding of the species history, these results suggest the two major mtDNA haplotypes in NA yak may functionally differ. Characterization of the impact of these differences on cellular function is currently underway.


2013 ◽  
Vol 5 ◽  
pp. BECB.S10886 ◽  
Author(s):  
Brijesh Singh Yadav ◽  
Venkateswarlu Ronda ◽  
Dinesh P. Vashista ◽  
Bhaskar Sharma

The recent advances in sequencing technologies and computational approaches are propelling scientists ever closer towards complete understanding of human-microbial interactions. The powerful sequencing platforms are rapidly producing huge amounts of nucleotide sequence data which are compiled into huge databases. This sequence data can be retrieved, assembled, and analyzed for identification of microbial pathogens and diagnosis of diseases. In this article, we present a commentary on how the metagenomics incorporated with microarray and new sequencing techniques are helping microbial detection and characterization.


Cladistics ◽  
1992 ◽  
Vol 8 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Victor A. Albert ◽  
Brent D. Mishler

Plant Disease ◽  
2021 ◽  
Author(s):  
Terry Torres-Cruz ◽  
Briana Whitaker ◽  
Robert Proctor ◽  
Kirk Broders ◽  
Imane Laraba ◽  
...  

Species within Fusarium are of global agricultural, medical, and food/feed safety concern and have been extensively characterized. However, accurate identification of species is challenging and usually requires DNA sequence data. FUSARIUM-ID (http://isolate.fusariumdb.org/) is a publicly available database designed to support the identification of Fusarium species using sequences of multiple phylogenetically informative loci, especially the highly informative ~680 bp 5' portion of the translation elongation factor 1-alpha (TEF1) gene that has been adopted as the primary barcoding locus in the genus. However, FUSARIUM-ID v.1.0 and 2.0 had several limitations, including inconsistent metadata annotation for the archived sequences and poor representation of some species complexes and marker loci. Here, we present FUSARIUM-ID v.3.0, which provides the following improvements: (i) additional and updated annotation of metadata for isolates associated with each sequence, (ii) expanded taxon representation in the TEF1 sequence database, (iii) availability of the sequence database as a downloadable file to enable local BLAST queries, and (iv) a tutorial file for users to perform local BLAST searches using either freely-available software, such as SequenceServer, BLAST+ executable in the command line, and Galaxy, or the proprietary Geneious software. FUSARIUM-ID will be updated on a regular basis by archiving sequences of TEF1 and other loci from newly identified species and greater in-depth sampling of currently recognized species.


Sign in / Sign up

Export Citation Format

Share Document