scholarly journals Description and molecular phylogeny of Tethya leysae sp. nov. (Porifera, Demospongiae, Hadromerida) from the Canadian Northeast Pacific with remarks on the use of microtomography in sponge taxonomy

Zootaxa ◽  
2010 ◽  
Vol 2422 (1) ◽  
pp. 1 ◽  
Author(s):  
ISABEL HEIM ◽  
MICHAEL NICKEL

The sponge Tethya leysae sp. nov. (Porifera, Demospongiae, Hadromerida, Tethyidae) is a new species from the Canadian Northeast Pacific. Its type locality is the infralittoral around Ohiat Islet, Barkely Sound, Vancouver Island in Canada. Tethya leysae sp. nov. is a medium-sized spherical sponge with a verrucose surface, orange-yellow to light red alive and white with a greyish core in ethanol. The highly variable oxyspherasters (25-115 µm in size, R/C 0.34-0.69) are densely scattered almost throughout the entire cortex. The micrasters comprise acanthoxyspherasters, acanthostrongylasters, acanthotylasters and small oxyspherasters, which are present at low densities throughout the sponge and form a dense layer associated with the exopinacoderm. The megascleres and the auxiliary megascleres comprise oxeas and strongyloxeas. The new species is clearly distinguishable from the closely related T. californiana by the absence of spherules among the micrasters, the lack of an alveolar cortex and the extremely high density of megasters in the cortex. In addition, the R/C values of the megasters differ between the two species and the oxyspherasters of T. leysae sp. nov. rarely display bent rays. The morphological differences between the species are confirmed by nucleotide and amino acid substitutions within the cytochrome oxidase subunit I (COI) mtDNA gene. Phylogenetic analyses group T. leysae sp. nov. with T. californiana, T. actinia and T. minuta, which together form a sister group to a MediterraneanNorth Atlantic species cluster. Morphological analyses of the skeleton included x-ray microtomography (µCT) and virtual 3D reconstruction, which was used for the first time in conjunction with the description of a new sponge species. Microtomography permitted the visualization and analysis of spicules within the skeletal context or isolated in silico. The method represents a valuable extension to the sponge taxonomist’s toolbox since it allows morphometric measurements in 3D. µCT will thus supplement classical morphological methods such as light and scanning electron microscopy.

Zootaxa ◽  
2019 ◽  
Vol 4551 (5) ◽  
pp. 556 ◽  
Author(s):  
TATIANA KORSHUNOVA ◽  
RAHUL MEHROTRA ◽  
SPENCER ARNOLD ◽  
KENNET LUNDIN ◽  
BERNARD PICTON ◽  
...  

An integrative molecular and morphological study is presented for the family Unidentiidae. Molecular phylogenetic analyses were conducted with the inclusion of all previous and newly obtained molecular data for the family Unidentiidae Millen & Hermosillo 2012. A new species of the genus Unidentia Millen & Hermosillo 2012, U. aliciae sp. nov., is described from Thailand as part of an inventory of sea slugs at Koh Tao. All up-to-date available morphological data for the species of the genus Unidentia is for the first time summarized. Morphological differences among the different species of Unidentia are clarified showing that every species has its own distinguishable morphological traits. According to the new molecular and morphological data, the family Unidentiidae is re-confirmed as a well-supported taxon of the aeolidacean nudibranchs. The taxonomy and phylogeny of the Aeolidacea in the light of the family Unidentiidae is briefly discussed and necessity of a fine-scale and narrowly-defined taxa approach instead of a ‘‘superlumping’’ one is highlighted. 


Zootaxa ◽  
2021 ◽  
Vol 4999 (1) ◽  
pp. 58-76
Author(s):  
Quyen Hanh Do ◽  
TRUNG MY PHUNG ◽  
HANH THI NGO ◽  
MINH DUC LE ◽  
THOMAS ZIEGLER ◽  
...  

A new species of the Cyrtodactylus irregularis group is described from Ninh Thuan Province, southern Vietnam based on molecular divergence and morphological differences. Cyrtodactylus orlovi sp. nov. is distinguished from the remaining Indochinese bent-toed geckos by having the unique combination of the following characters: size medium (SVL 61.0–77.7 mm); dorsal tubercles in 16–20 irregular rows; 36–39 ventral scale rows; precloacal pores absent in females, 5 or 6 in males, in a continuous row; femoral pores absent; 3–8 enlarged femoral scales; postcloacal spurs 1 or 2; lamellae under toe IV 16–19; a continuous neckband; a highly irregular transverse banded dorsal pattern; the absence of transversely enlarged median subcaudal scales. In phylogenetic analyses, the new species was revealed to be the sister taxon to a clade consisting of Cyrtodactylus cattienensis and the most recently described species from Vietnam, C. chungi, with 12.1–12.4% and 11.7 % pairwise genetic divergence from the two species, respectively, based on a fragment of the mitochondrial COI gene.  


Zootaxa ◽  
2021 ◽  
Vol 4974 (1) ◽  
pp. 116-134
Author(s):  
MINLI CHEN ◽  
JINLONG LIU ◽  
BO CAI ◽  
JUN LI ◽  
NA WU ◽  
...  

An adult sand snake specimen was collected during a herpetofaunal survey conducted in the Turpan Basin in northwest China. Phylogenetic analyses revealed that this specimen, along with other snake sloughs and skins collected from different localities in the Turpan Basin formed a clade that is sister to Psammophis lineolatus. This taxon exhibited substantial divergence from its congeners (P. lineolatus and P. condanarus) with uncorrelated p-distances ranging from 11.9 ± 0.9% to 15.8 ± 1.6% for the ND4 gene and from 10.2 ± 0.8% to 13.8 ± 1.1% for the Cytb gene. Given the genetic differences along with morphological differences, we describe the specimen from the Turpan Basin as Psammophis turpanensis sp. nov. We provide detailed morphological descriptions, and compare this specimen with five Asian sand snakes and the Afro-Asian Sand Snake, P. schokari. In addition, we provide brief comments on the biogeography of Psammophis in China. 


Zootaxa ◽  
2017 ◽  
Vol 4254 (5) ◽  
pp. 537 ◽  
Author(s):  
CHIA-HSUAN WEI ◽  
SHEN-HORN YEN

The Epicopeiidae is a small geometroid family distributed in the East Palaearctic and Oriental regions. It exhibits high morphological diversity in body size and wing shape, while their wing patterns involve in various complex mimicry rings. In the present study, we attempted to describe a new genus, and a new species from Vietnam, with comments on two assumed congeneric novel species from China and India. To address its phylogenetic affinity, we reconstructed the phylogeny of the family by using sequence data of COI, EF-1α, and 28S gene regions obtained from seven genera of Epicopeiidae with Pseudobiston pinratanai as the outgroup. We also compared the morphology of the new taxon to other epicopeiid genera to affirm its taxonomic status. The results suggest that the undescribed taxon deserve a new genus, namely Mimaporia gen. n. The species from Vietnam, Mimaporia hmong sp. n., is described as new to science. Under different tree building strategies, the new genus is the sister group of either Chatamla Moore, 1881 or Parabraxas Leech, 1897. The morphological evidence, which was not included in phylogenetic analyses, however, suggests its potential affinity with Burmeia Minet, 2003. This study also provides the first, although preliminary, molecular phylogeny of the family on which the revised systematics and interpretation of character evolution can be based. 


Phytotaxa ◽  
2018 ◽  
Vol 334 (2) ◽  
pp. 183 ◽  
Author(s):  
Fatima El-Houaria ZITOUNI-HAOUAR ◽  
JUAN RAMÓN CARLAVILLA ◽  
GABRIEL MORENO ◽  
JOSÉ LUIS MANJÓN ◽  
ZOHRA FORTAS

Morphological and phylogenetic analyses of large ribosomal subunit (28S rDNA) and internal transcribed spacer (ITS rDNA) of Terfezia samples collected from several bioclimatic zones in Algeria and Spain revealed the presence of six distinct Terfezia species: T. arenaria, T. boudieri, T. claveryi; T. eliocrocae (reported here for the first time from North Africa), T. olbiensis, and a new species, T. crassiverrucosa sp. nov., proposed and described here, characterized by its phylogenetic position and unique combination of morphological characters. A discussion on the unresolved problems in the taxonomy of the spiny-spored Terfezia species is conducted after the present results.


MycoKeys ◽  
2019 ◽  
Vol 47 ◽  
pp. 53-74 ◽  
Author(s):  
Yuan-Pin Xiao ◽  
Sinang Hongsanan ◽  
Kevin D. Hyde ◽  
Siraprapa Brooks ◽  
Ning Xie ◽  
...  

Ophiocordyceps is entomopathogenic and the largest studied genus in the family Ophiocordycipitaceae. Many species in this genus have been reported from Thailand. The first new species introduced in this paper, Ophiocordycepsglobiceps, differs from other species based on its smaller perithecia, shorter asci and secondary ascospores and additionally, in parasitising fly species. Phylogenetic analyses of combined LSU, SSU, ITS, TEF1α and RPB1 sequence data indicate that O.globiceps forms a distinct lineage within the genus Ophiocordyceps as a new species. The second new species, Ophiocordycepssporangifera, is distinguished from closely related species by infecting larvae of insects (Coleoptera, Elateridae) and by producing white to brown sporangia, longer secondary synnemata and shorter primary and secondary phialides. We introduce O.sporangifera based on its significant morphological differences from other similar species, even though phylogenetic distinction is not well-supported.


2014 ◽  
Vol 46 (3) ◽  
pp. 295-301 ◽  
Author(s):  
Pieter P. G. VAN DEN BOOM ◽  
Damien ERTZ

AbstractThe new species Micarea usneae is described from Madeira. It has been found at two localities where it grew on epiphytic Usnea thalli. Micarea usneae is distinguished by a very thin pale brownish thallus, pallid to greyish black or bluish subglobose apothecia of 0·1–0·3 mm diameter, very narrow (1·5–2·5 µm) ascospores, black pycnidia and strongly curved to sigmoid macroconidia. Phylogenetic analyses using mtSSU sequences place the new species in the Micarea peliocarpa group. Catillaria usneicola and Cladonia parasitica are recorded for the first time from Madeira. A key to the lichenicolous species on Usnea in Macaronesia is provided.


Zootaxa ◽  
2007 ◽  
Vol 1535 (1) ◽  
pp. 1-92 ◽  
Author(s):  
DALTON DE SOUZA AMORIM ◽  
EIRIK RINDAL

A phylogenetic analysis of the Mycetophiliformia (= Sciaroidea) was performed to determine the relationships among its families and to place the following genera of uncertain position in the system: Heterotricha, Ohakunea, Colonomyia, Freemanomyia, Rhynchoheterotricha, Chiletricha, Afrotricha, Anisotricha, Kenyatricha, Nepaletricha, Sciarosoma, Sciaropota, Insulatricha, Cabamofa, Rogambara, and Starkomyia. Eratomyia n. gen. is described based on a new species from Ecuador. Colonomyia brasiliana sp.n. and Colonomyia freemani sp.n. are described respectively from southern Brazil and Chile. The male of Cabamofa mira Jaschhof is described for the first time. A total of 64 terminal taxa and 137 transformation series (with 202 characters) were included in the data matrix, with a number of new features from thoracic morphology. Willi Hennig’s 1973 system for the higher Bibionomorpha was adopted using the name Mycetophiliformia for the Sciaroidea. The Mycetophiliformia are monophyletic. The family Cecidomyiidae appears as the sister group of the remaining Mycetophiliformia, followed by the Sciaridae. In the preferred topology, the Rangomaramidae appear as the group sister of a clade consisting of (Ditomyiidae + Bolitophilidae + Diadocidiidae + Keroplatidae) and of (Lygistorrhinidae + Mycetophilidae). The topology within the Rangomaramidae is (Chiletrichinae subfam. n. (Heterotrichinae subfam. n. ((Rangomaraminae + Ohakuneinae subfam. n.))). The Chiletrichinae include the genera Kenyatricha, Rhynchoheterotricha, Insulatricha, Chiletricha, and Eratomyia n. gen. Heterotrichinae and Rangomaraminae are monotypic. The subfamily Ohakuneinae includes Ohakunea, Colonomyia, Cabamofa, and Rogambara. The positions of Freemanomyia, Loicia, Taxicnemis, Sciaropota, Starkomyia, Anisotricha, Nepaletricha, and Sciarosoma are considered. Afrotricha might belong to the Sciaridae. The similarities used by many authors to gather the Sciaridae and Mycetophilidae in a clade are shown to be a combination of plesiomorphies and homoplasies.


Zootaxa ◽  
2018 ◽  
Vol 4415 (3) ◽  
pp. 452 ◽  
Author(s):  
P. R. PUGH ◽  
C.W. DUNN ◽  
S.H.D. HADDOCK

A new species of calycophoran siphonophore, Tottonophyes enigmatica gen. nov, sp. nov., is described. It has a unique combination of traits, some shared with prayomorphs (including two rounded nectophores) and some with clausophyid diphyomorphs (the nectophores are dissimilar, with one slightly larger and slightly to the anterior of the other, and both possess a somatocyst). Molecular phylogenetic analyses indicate that the new species is the sister group to all other diphyomorphs. A new family, Tottonophyidae, is established for it. Its phylogenetic position and distinct morphology help clarify diphyomorph evolution. The function and homology of the nectophoral canals and somatocyst is also re-examined and further clarification is given to their nomenclature.


2015 ◽  
Author(s):  
Natália Rizzo Friol ◽  
Flávio de Barros Molina ◽  
Hussam El Dine Zaher

Background. Phrynops present four valid species, including P. geoffroanus that might represents a complex of cryptic species. Here, we provide a preliminary analysis of the taxonomy and phylogenetic affinities within Phrynops, with special reference to the taxonomic status of populations of P. geoffroanus and P. tuberosus, and the recognition of a new species from Southern Brazil. Methods. We studied populations from ten Brazilian river basins. A linear morphometric analysis was performed in order to define taxonomically distinct populations. Also, a phylogenetic analysis using morphology and molecular data (sequenced for the genes R35, RAG2, c-mos, cytb, ND4, and 12S) were carried out. Three distinct sets of phylogenetic analyses were performed: parsimony to morphological and combined data, and maximum likelihood to molecular data. Results. The combined analysis shows that Phrynops represents a well supported clade. The set of skeletal data supports Mesoclemmys as the sister group of Phrynops, whereas the molecular and combined data sets show Phrynops as the sister group of a clade composed by all the remaining genera of Chelidae, except Hydromedusa. Our morphological analyses suggest that P. hilarii is the sister group of P. geoffroanus, but in both molecular and combined analyses, P. hilarii appears nested within the clade formed by the populations of P. geoffroanus. Futhermore, P. tuberosus and P. geoffroanus are not distinguishable by the set of osteological and morphometric data. On the other hand, both morphometric and osteological data show that the population of P. geoffroanus from the Paraná river basin is a distinct species. Discussion. The sister group relationships of Phrynops could not be clearly defined due to the different topologies achieved. Phrynops hilarii is included within of P. geoffroanus in both molecular and combined data, but this position has little statistical support and therefore does not express a clear position of P. hilarii within the genus Phrynops. Besides, we were not able to distinguish P. geoffroanus and P. tuberosus. However, a sampling of specific locations are still needed to objectively define the taxonomic status of P. tuberosus. Finally, the population of P. geoffroanus from the Paraná basin is clearly distinct from the remaining populations of this species. Qualitative osteological characters and morphometric results seem to demonstrate that this population is a new species of Phrynops.


Sign in / Sign up

Export Citation Format

Share Document