Biogeography and taxonomy of racket-tail hummingbirds (Aves: Trochilidae: Ocreatus): evidence for species delimitation from morphology and display behavior

Zootaxa ◽  
2016 ◽  
Vol 4200 (1) ◽  
pp. 83 ◽  
Author(s):  
KARL-L. SCHUCHMANN ◽  
ANDRÉ-A. WELLER ◽  
DIETMAR JÜRGENS

We analyzed geographic variation, biogeography, and intrageneric relationships of racket-tail hummingbirds Ocreatus (Aves, Trochilidae). Presently, the genus is usually considered monospecific, with O. underwoodii including eight subspecies (polystictus, discifer, underwoodii, incommodus, melanantherus, peruanus, annae, addae), although up to three species have been recognized by some authors. In order to evaluate the current taxonomy we studied geographic variation in coloration, mensural characters, and behavioral data of all Ocreatus taxa. We briefly review the taxonomic history of the genus. Applying the Biological Species Concept, species delimitation was based on a qualitative-quantitative criteria analysis including an evaluation of character states. Our results indicate that the genus should be considered a superspecies with four species, the monotypic Ocreatus addae, O. annae, and O. peruanus, and the polytypic O. underwoodii (including the subspecies underwoodii, discifer, incommodus, melanantherus, polystictus). In this taxonomic treatment, O. annae becomes an endemic species to Peru and O. addae is endemic to Bolivia. We recommend additional sampling of distributional, ethological, and molecular data for an improved resolution of the evolutionary history of Ocreatus. 

2021 ◽  
Vol 102 (4) ◽  
Author(s):  
Yiyuan Li ◽  
Angela C. O’Donnell ◽  
Howard Ochman

Mosquito-borne arboviruses, including a diverse array of alphaviruses and flaviviruses, lead to hundreds of millions of human infections each year. Current methods for species-level classification of arboviruses adhere to guidelines prescribed by the International Committee on Taxonomy of Viruses (ICTV), and generally apply a polyphasic approach that might include information about viral vectors, hosts, geographical distribution, antigenicity, levels of DNA similarity, disease association and/or ecological characteristics. However, there is substantial variation in the criteria used to define viral species, which can lead to the establishment of artificial boundaries between species and inconsistencies when inferring their relatedness, variation and evolutionary history. In this study, we apply a single, uniform principle – that underlying the Biological Species Concept (BSC) – to define biological species of arboviruses based on recombination between genomes. Given that few recombination events have been documented in arboviruses, we investigate the incidence of recombination within and among major arboviral groups using an approach based on the ratio of homoplastic sites (recombinant alleles) to non-homoplastic sites (vertically transmitted alleles). This approach supports many ICTV-designations but also recognizes several cases in which a named species comprises multiple biological species. These findings demonstrate that this metric may be applied to all lifeforms, including viruses, and lead to more consistent and accurate delineation of viral species.


Phytotaxa ◽  
2020 ◽  
Vol 455 (4) ◽  
pp. 262-266
Author(s):  
LIANG ZHANG ◽  
LI-BING ZHANG

The biological species concept is not exclusively applicable in many groups of organisms including ferns. Interspecific fern hybrids are not rare: there are 16 intergeneric hybrid genera in ferns confirmed with molecular data. Here we add one more hybrid genus in the tribe Lepisoreae of Polypodiaceae, ×Lepinema, formed via hybridization between parents in two genera: Ellipinema and Lepisorus.


Zootaxa ◽  
2009 ◽  
Vol 2301 (1) ◽  
pp. 29-54 ◽  
Author(s):  
FRANK E. RHEINDT ◽  
JAMES A. EATON

The question of how to define a species continues to divide biologists. Meanwhile, the application of different species concepts has led to disparate taxonomic treatments that confound conservationists and other biologists. The most widely followed guidelines to species designation in avian and other vertebrate taxonomy are Ernst Mayr’s Biological Species Concept (BSC) and Joel Cracraft’s version of the Phylogenetic Species Concept (PSC). Although the BSC is considered to be more conservative in its assignment of species status, there is a lack of research demonstrating differences in taxonomic treatment between the BSC and the PSC with reference to a multi-taxon multi-trait study system. We examined the case of five traditionally recognized species of shrike-babbler (Pteruthius) that have recently been divided into 19 species under the PSC. Re-analyzing previous morphological and molecular data and adding new vocal data, we propose a BSC classification of 9 species. However, taking into consideration geographic gaps in the sampling regime, we contend that additional data will likely reduce discrepancies between the total numbers of species designated under the PSC and BSC. The current PSC species total is a likely overestimate owing to species diagnosis based on characters that erroneously appear to be unique to a taxon at low sample size. The current BSC species total as here proposed is a likely underestimate on account of the conservative designation of taxa as subspecies in equivocal cases, e.g. where BSC species status is potentially warranted but may be masked by insufficient data.


The Auk ◽  
2021 ◽  
Author(s):  
Kevin Winker ◽  
Pamela C Rasmussen

Abstract Despite the acknowledged importance of defining avian species limits to scientific research, conservation, and management, in practice, they often remain contentious. This is true even among practitioners of a single species concept and is inevitable owing to the continuous nature of the speciation process, our incomplete and changing understanding of individual cases, and differing interpretations of available data. This issue of Ornithology brings together several papers on species limits, some more theoretical and general, and others case studies of specific taxa. These are viewed primarily through the lens of the biological species concept (BSC), by far the most widely adopted species concept in influential ornithological works. The more conceptual contributions focus on the importance of the integrative approach in species delimitation; the importance of considering selection with the increasing use of genomic data; examinations of the effectiveness of the Tobias et al. character-scoring species limits criteria; a review of thorny issues in species delimitation using examples from Australo-Papuan birds; and a review of the process of speciation that addresses how population divergence poses challenges. Case studies include population genomics of the American Kestrel (Falco sparverius); an integrative taxonomic analysis of Graceful Prinia (Prinia gracilis) that suggests two species are involved; and a reevaluation of species limits in Caribbean Sharp-shinned Hawk (Accipiter striatus) taxa.


The Condor ◽  
2002 ◽  
Vol 104 (3) ◽  
pp. 687-693
Author(s):  
John W. Chardine

Abstract This paper reports geographic variation in wingtip patterns of Black-legged Kittiwakes (Rissa tridactyla) from the circumpolar Arctic. The amount of black in the wingtip increased and the amount of white decreased from Arctic Canada–west Greenland, counterclockwise to the Pacific. Differences were greatest between Pacific and Atlantic, but were also apparent within the Atlantic sample. Patterns of variation were not clinal. Known levels of philopatry in kittiwakes would tend to maintain both phenotypic and genotypic differences between regions, but the similarity of birds from Newfoundland, British Isles, and Barents Sea suggests some degree of dispersal over this wide area. Wingtip pattern data support continued separation of Pacific and Atlantic kittiwakes into two subspecies under the biological species concept. Under the phylogenetic species concept, Pacific and Atlantic Black-legged Kittiwakes may represent two species. Variación Geográfica en los Patrones de Coloración de la Punta del Ala de Rissa tridactyla Resumen. Este trabajo presenta la variación geográfica existente en los patrones de coloración de la punta del ala de Rissa tridactyla en el área circumpolar ártica. La cantidad de negro en la punta del ala incrementó y la cantidad de blanco disminuyó desde el ártico canadiense y el oeste de Groenlandia en sentido contrario a las agujas del reloj hacia el Pacífico. Las mayores diferencias se registraron entre el Pacífico y el Atlántico, pero también fueron evidentes en la muestra del Atlántico. Los patrones de variación no fueron graduales. Los niveles conocidos de filopatría en R. tridactyla tenderían a mantener las diferencias tanto fenotípicas como genotípicas entre regiones, pero la similitud de las aves de Newfoundland, las Islas Británicas y el Mar de Barents sugiere algún grado de dispersión a través de esta extensa área. Considerando el concepto biológico de especie, los datos sobre los patrones de la punta del ala apoyan la separación de las aves del Pacífico y del Atlántico en dos subespecies. Considerando el concepto filogenético de especie, los individuos de R. tridactyla del Pacífico y del Atlántico pueden pertenecer a dos especies diferentes.


Zootaxa ◽  
2006 ◽  
Vol 1293 (1) ◽  
pp. 1 ◽  
Author(s):  
PATRICK DAVID ◽  
GERNOT VOGEL ◽  
S. P. VIJAYAKUMAR ◽  
NICOLAS VIDAL

The brown Asian pitvipers of the genus Trimeresurus related to Trimeresurus puniceus (informal Trimeresurus puniceus-complex) are revised on the basis of morphological and molecular analyses. Variation in morphological characters were investigated among 119 specimens from 62 populations of the whole range of the pitvipers currently known as Trimeresurus puniceus (Boie, 1827), Trimeresurus borneensis (Peters, 1872) and Trimeresurus brongersmai Hoge, 1969. Molecular and morphological analyses clearly differentiate two groups of taxa, referrable to the informal Trimeresurus puniceus-group and Trimeresurus borneensis-group, and confirm the distinct specific status of T. puniceus and T. borneensis. Morphological univariate and multivariate analyses differentiate six clusters of populations that are morphologically diagnosable, of which five are here considered to represent independent lineages and one is placed incertae sedis pending the availability of further specimens. These clusters are considered to be distinct species following the Biological Species Concept and the Phylogenetic Species Concept. One of them is described as a new species, Trimeresurus andalasensis spec. nov. (T. borneensis-group), which includes populations from northern Sumatra. Trimeresurus wiroti Trutnau, 1981 is revalidated to accommodate populations from Thailand and West Malaysia. Trimeresurus borneensis is here considered endemic to Borneo. Trimeresurus puniceus is known from Java and from South Sumatra, but the taxonomy of this species in Sumatra is left unresolved. Also left unresolved is the taxonomic position of specimens from western Sumatra and the Mentawai Archipelago, and from the Natuna Islands and Anamba Islands. Although belonging to the T. puniceus-group, they show some differences to other specimens of the group. They are not referred to any taxon pending the collection of additional specimens. Lastly, Trimeresurus brongersmai is confirmed as a valid species from the Mentawai Archipelago. A key to these taxa is provided.


The Auk ◽  
2003 ◽  
Vol 120 (2) ◽  
pp. 522-527
Author(s):  
Robert M. Zink ◽  
Jason D. Weckstein

Abstract On the basis of plumage coloration and mitochondrial DNA variation, four main groups are recognized within the Fox Sparrow (Passerella iliaca): the red group (iliaca, RE), sooty group (unalaschcensis, SO), thick-billed (megarhyncha, TB), and slate-colored (schistacea, SC). To establish phylogenetic relationships among those four groups, we analyzed 2119 base pairs of sequence from four mitochondrial regions: ND2, ND3, cytochrome b, and control region. The control region is less variable than the coding genes surveyed. Both maximum parsimony and maximum likelihood resolved the same ingroup relationships (RE(SC(TB,SO))). However, placement of the root could not be established, even with four outgroups. Lack of resolution of the root is due to the nearest living relative of the Fox Sparrow being over 11% divergent. Despite lacking a clear root, the data suggest that the two taxa connected by a hybrid zone (TB, SC) are not sister species, which has implications for species limits because under the biological species concept they should be lumped. We recommend that all four main groups be recognized as species.


Author(s):  
Klaus-Peter Koepfli ◽  
Jerry W. Dragoo ◽  
Xiaoming Wang

This chapter provides a review of the evolutionary and taxonomic history of the Musteloidea, which is the most species-rich superfamily of the Carnivora, containing approximately 30% of the extant species in the order. An up-to-date summary of knowledge on the evolutionary and taxonomic history and phylogenetic relationships of the Mephitidae, Ailuridae, Procyonidae and Mustelidae is provided. Multilocus DNA sequences have made a large impact on the understanding of phylogenetic relationships among the Musteloidea. Molecular data have revealed distinct families (Ailuridae and Mephitidae) within the Musteloidea and have illuminated new relationships based on tempo and patterns of evolution within the Procyonidae. Morphological data in conjunction with molecular data have been used to elucidate species boundaries within certain musteloid genera and have led to the discovery of a new species. Research studies published during the last 30 years have enriched and transformed our understanding of the evolution of musteloid biodiversity.


Author(s):  
Alessio Papini ◽  
Sara Falsini ◽  
Tiruha Habte Karssa

Cyanobacteria are prokaryotes whose taxonomy follows the same rules of a code (the International Botanical Nomenclature Code, IBNC) built for eukaryotic photosynthetic organisms. Hence, names of cyanobacteria follow the same rules and are assigned to biological entities (species) that should correspond to eukaryotic species. The main difficulty in the current situation is that the species concept in eukaryotes is based theoretically mainly on the biological species concept, that is centered on genetic exchange through sexual reproduction or lack of them. However, as shown, this difference is important from a theoretical point of view, but also in eukaryotes, the boundaries between different species are very rarely checked experimentally by direct observation of sexual barriers and hybridization events. The main concept for species delimitation is hence that related to morphology and, more recently and always in relation to morphology, DNA sequences. The introduction of distances obtained from matrixes of aligned sequences in the framework of a barcoding project provides a quantitative interpretation of species delimitation in relation to genetic distance that can be used both in eukaryotes and prokaryotes. However, the introduction of quantitative criteria needs the definition of distance thresholds to identify the boundaries between different species and, for doing that, it is necessary to test the distance thresholds in models of traditionally defined and recognized species. An alternative approach may be the comparison of the molecular distance (quantitative approach) to data about the capability of strains/species to exchange genetic information. Unfortunately data about this last question is still scarce. The adoption of molecular criteria to check species boundaries based on morphological characters has proved particularly challenging in cyanobacteria: a known example is provided. In conclusion, the only possible approach appears to be the association of molecular data to the increase of available data about the cell structure and the variation thereof in different physiological situations, particularly at the ultrastructural level. A further necessity is the check of the typus for a large number of cyanobacteria species, often based on old basionyms. In many of these cases the typus is often a drawing and more rarely a herbarium specimen or a microscope slide. In many cases an epitypification or a neotypification appears to be necessary.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11459
Author(s):  
Haiguang Zhang ◽  
Xin Ning ◽  
Xin Yu ◽  
Wen-Jun Bu

Paracercion are common ‘blue and black’ colored damselflies. We explore the species boundaries of Paracercion (Odonata: Coenagrionidae) using ABGD, bPTP, GMYC and Distance-based clustering. We finally got the molecular data of all nine species of Paracercion. P. hieroglyphicum and P. melanotum were combined into one putative species based on cytochrome c oxidase I (COI). However, they were separated into two putative species based on the nuclear segment including ITS1-5.8S-ITS2 (ITS). This suggests the introgression of mtDNA in Paracercion. Paracercion barbatum and Paracercion melanotum can be separated into two species based on COI, whereas they were combined into one putative species based on ITS, which suggests a hybridization event between them. The lower interspecific divergence (COI: 0.49%) between P. barbatum and Paracercion v-nigrum indicates a recent speciation event in Paracercion. Paracercion sieboldii and P. v-nigrum can be separated into two putative species based on COI, while they were frequently merged into the same putative species based on ITS. This can be explained by incomplete lineage sorting in nDNA. Besides, P. pendulum and P. malayanum were synonymized as junior synonyms of P. melanotum. P. luzonicum was confirmed not to belong to Paracercion. The possibility of introgression, hybridization, recent speciation and incomplete lineage sorting makes species delimitation, based on molecular data, difficult and complicates understanding of the evolutionary history of Paracercion. The discordance in COI and ITS also indicates the value of using markers from different sources in species delimitation studies.


Sign in / Sign up

Export Citation Format

Share Document