Phylogenetic relationships and a new classification of the family Cyclopteridae (Perciformes: Cottoidei)

Zootaxa ◽  
2017 ◽  
Vol 4221 (1) ◽  
pp. 1 ◽  
Author(s):  
KANAMI OKU ◽  
HISASHI IMAMURA ◽  
MAMORU YABE

 Phylogenetic relationships of the family Cyclopteridae were reconstructed based on osteological and external characters.  The monophyly of the family was strongly supported by 47 commonly recognized synapomorphies, including six autapomorphies (plus one additional autapomorphy, presence of a dorsal process on the pelvis, recognized after the phylogenetic analysis) among the suborder Cottoidei.  As a result of the cladistic analysis, a single most parsimonious phylogeny was obtained, based on characters in 32 transformation series.  A new classification of Cyclopteridae based on reconstructed relationships, including three subfamilies [Liparopsinae, Cyclopterinae and Eumicrotreminae (newly established)] and four genera (Aptocyclus, Cyclopsis, Cyclopterus and Eumicrotremus), is proposed.    

1997 ◽  
Vol 75 (6) ◽  
pp. 963-970 ◽  
Author(s):  
André-Denis G. Wright ◽  
Denis H. Lynn

Phylogenetic relationships within the largest family of entodiniomorphid rumen ciliates, the Ophryoscolecidae, were inferred from comparisons of small-subunit ribosomal RNA gene sequences. These included three new sequences from Diplodinium dentatum (1638 base pairs (bp)), Eudiplodinium maggii (1637 bp), and Ophryoscolex purkynjei (1636 bp). Using morphological characters, Lubinsky constructed a cladogram of the Ophryoscolecidae, and on the basis of his analysis, he divided the family into three subfamilies (Entodiniinae, Diplodiniinae, Ophryoscolecinae) to reflect his "natural" groupings (G. Lubinsky. 1957. Can. J. Zool. 35: 141 – 159). Our cladistic analysis, based on the limited morphological and ultrastructural data available, indicates that there are no synapomorphies supporting the Diplodiniinae sensu Lubinsky. However, based upon the six 18S sequences for the Ophryoscolecidae, the rumen ciliates are monophyletic and fall into three distinct groups corresponding to Lubinsky's subfamilial division of the family. Our molecular analysis shows Entodinium to be the earliest branching rumen ciliate (subfamily Entodiniinae) and Eudiplodinium, not Diplodiium, branching first among the diplodiniines.


Zootaxa ◽  
2009 ◽  
Vol 2284 (1) ◽  
pp. 1-29 ◽  
Author(s):  
CECILIA WAICHERT ◽  
CELSO O. AZEVEDO

Rhabdepyris (Epyrinae) is a cosmopolitan genus comprised of 132 species. No morphological synapomorphies are known for the genus and the genus is characterized by a combination of characters common to most Epyrini. Herein, we performed a cladistic analysis based on morphological characters to test the monophyly of Rhabdepyris. The three known subgenera of Rhabdepyris (Chlorepyris, Rhabdepyris s. str., and Trichotepyris) and other Epyrini (Anisepyris, Bakeriella, Calyozina, Epyris, Laelius, Trachepyris) were included in the ingroup. The cladistic analysis of 48 taxa (46 ingroup species and two outgroup species) and 81 structural characters yielded 72 cladograms under equal weights, and one under successive weighting. Rhabdepyris was found to be polyphyletic; the subgenus Trichotepyris was closely related to Anisepyris whereas Rhabdepyris str. s. was closely related to Laelius. The subgenus Chlorepyris is paraphyletic. Morphological characters are discussed in the light of the new phylogeny; novel characters are proposed and illustrated, and a new classification of Rhabdepyris and Epyrini is proposed. The following nomenclatural changes are proposed: Trichotepyris is synonymized under Anisepyris (syn. n.); Chlorepyris is recognized as a separated genus (stat. rev.); all 12 American species of the subgenus Rhabdepyris are transferred to Laelius; 22 species of Trichotepyris are transferred to Anisepyris; 58 species are transferred to Chlorepyris. A remaining total of 40 species are now recognized in Rhabdepyris. The holotype of Rhabdepyris, R. myrmecophilus Kieffer, the type species of Rhabdepyris, is redescribed.


Zootaxa ◽  
2018 ◽  
Vol 4536 (1) ◽  
pp. 1
Author(s):  
KATSUYA KIMURA ◽  
HISASHI IMAMURA ◽  
TOSHIO KAWAI

The phylogenetic relationships of the families Cheilodactylidae and Latridae, plus related taxa, are examined from a detailed osteological perspective. The monophyly of each family is re-evaluated and a new classification is proposed on the basis of phylogenetic relationships. A phylogenetic analysis of characters in 67 transformation series showed Latridae to comprise a monophyletic group nested within cheilodactylids. Cheilodactylidae was non-monophyletic, but rather was formed by a clade including Cheilodactylus fasciatus and C. pixi having a sister relationship with a second clade comprising remaining cheilodactylids and latrids. A new classification is proposed, Cheilodactylidae, including only genus Cheilodactylus, and Latridae, including six genera (Latris, Nemadactylus, Mendosoma, Goniistius, Latridopsis and Dactylophora). 


Zootaxa ◽  
2019 ◽  
Vol 4648 (1) ◽  
pp. 111-129
Author(s):  
JEFFREY M. CUMMING ◽  
SCOTT E. BROOKS

Phylogenetic relationships of the subgroups of Parathalassiinae are presented, based on a morphological cladistic analysis. Worldwide, all known extant genera, species groups and newly discovered undescribed lineages are represented in the analysis. Some previously proposed generic relationships are supported by the analysis, but recognition of many current genera renders the present concept of Microphorella Becker as both paraphyletic and polyphyletic. Microphorella merzi Gatt is here classified in Eothalassius Shamshev & Grootaert, as Eothalassius merzi (Gatt) comb. nov. A preliminary classification with all included extant lineages within the Parathalassiinae (at the genus and species group level) is outlined. The ranking of these lineages is discussed and several species groups of Microphorella may need to be elevated to generic or subgeneric level, whereas some currently recognized genera may need to be relegated to subgenera. 


2006 ◽  
Vol 75 (01-02) ◽  
pp. 23-73 ◽  
Author(s):  
Hiroaki Karasawa ◽  
Carrie E. Schweitzer

A phylogenetic analysis was conducted including representatives from all recognized extant and extinct families of the Xanthoidea sensu lato, resulting in one new family, Hypothalassiidae. Four xanthoid families are elevated to superfamily status, resulting in Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Goneplacoidea, and numerous subfamilies are elevated to family status. The Mathildellidae is moved from the Goneplacidae to the Portunoidea. Diagnoses for all superfamilies and families discussed herein are provided, embracing characters typically used by biologists as well as readily fossilized features of the dorsal carapace, sternum, abdomen, and chelipeds. All genera known from the fossil record at one time referred to the Xanthidae sensu lato, Xanthoidea sensu lato, or Goneplacidae sensu latowere evaluated as to their family level placement and as a result, the family-level placement of many of these genera has been changed herein. Balcacarcinusnew substitute name, is provided herein for BittneriaSchweitzer and Karasawa, 2004.


2002 ◽  
Vol 80 (4) ◽  
pp. 596-623 ◽  
Author(s):  
Bruce O'Toole

A phylogenetic analysis, based on 138 putatively informative characters, of the 11 species of the superfamily Echeneoidea (Echeneidae, Rachycentridae, and Coryphaenidae) resulted in a single most parsimonious tree. This tree strongly supports the monophyly of the superfamily with the following relationships: Coryphaenidae + (Rachycentridae + (Phtheirichthys lineatus + ((Echeneis naucrates + Echeneis neucratoides) + (Remora brachyptera + (Remora remora + (Remora australis + (Remora osteochir + Remora albescens))))))). One of the traditional subfamilies, Echeneiinae, and one of the traditional genera, Remora, were both found to be paraphyletic. A new classification of the family based on natural groupings eliminated the subfamilial designations and subsumed the genus Remorina under the genus Remora, rendering it monophyletic. An examination of the behavioural data resulted in the hypothesis of a gradual step-by-step development of "hitchhiking" behaviour from general schooling behaviour (outgroups) to attaching to a select few types of hosts in the pelagic environment (as exhibited by R. osteochir).


Zootaxa ◽  
2019 ◽  
Vol 4648 (2) ◽  
pp. 201-240 ◽  
Author(s):  
PAULINO JOSÉ SOARES JR. SOUZA ◽  
LUIZ RICARDO L. SIMONE

As part of a project intended to review the taxa of Marginellidae worldwide, the phylogenetic relationships of its main representatives are provided based on comparative phenotypy. Characters from most structures and organs are investigated and used for a phylogenetic analysis, resulting in the following cladogram: ((((Marginellona gigas ((Eratoidea watsoni ((Prunum sp—Leptegouana guttata) (Volvarina brasiliana (Prunum prunum—P. rubens)))) (Austroginella muscaria (Marginella ealesae ((Marginella rosea (M. glabella—M. sebastiani)) (Dentimargo bruneolus (Eratoidea scalaris (Dentimargo sp—D. aureocincta)))))))) Pachycymbiola brasiliana*) Persicula sagitatta*) Buccinanops gradatus*). Those marked with * are outgroups functionally analyzed as part of the ingroup (respectively a volutid, a cystiscid and a nassariid); the root is based on Trophon geversianus (Muricidae). The genera Prunum, Marginella and Dentimargo are revealed as non-monophyletic. The monophyly of the family Marginellidae is supported by 17 synapomorphies. The volutids appear to be its sister taxon, and the possibility of Marginellidae being only a branch of Volutidae is discussed. 


2005 ◽  
Vol 19 (1) ◽  
pp. 17 ◽  
Author(s):  
R. A. B. Leschen ◽  
J. F. Lawrence ◽  
S. A. Ślipiński

Phylogenetic relationships among the basal Cucujoidea were reconstructed by a cladistic analysis of a data matrix consisting of 37 exemplar taxa and 99 adult and larval characters. Eight most parsimonious cladograms provided evidence for the polyphyly of Phloeostichidae, the paraphyly of Cucujoidea (with respect to the placement of Trogossitidae), and the monophyly of Protocucujidae + Sphindidae, Biphyllidae + Erotylidae, Cryptophagidae, Cucujidae + Silvanidae, Propalticidae + Laemophloeidae, and the Nitidulidae groups (Nitidulidae, Smicripidae, and Brachypteridae). The following families are elevated from subfamily to family status: Agapythidae (one genus), Phloeostichidae (four genera; the subfamilies Phloeostichinae and Hymaeinae are supressed), Priasilphidae (three genera), Tasmosalpingidae (one genus), and Myraboliidae (one genus). These families are described in detail and adult and larval keys to all families of Cucujoidea are provided. The genus Bunyastichus, gen. nov. (type species: B. monteithi, sp. nov.) is described in the family Phloeostichidae and the family Priasilphidae is revised with the following new taxa: Chileosilpha, gen. nov. (type species: C. elguetai, sp. nov.), Priasilpha (P. angulata, sp. nov., P. aucklandica, sp. nov., P. bufonia, sp. nov., P. carinata, sp. nov., P. earlyi, sp. nov., and P. embersoni, sp. nov.), Priastichus (P. crowsoni, sp. nov. and P. megathorax, sp. nov.).


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Marcos Godoy ◽  
Daniel A. Medina ◽  
Rudy Suarez ◽  
Sandro Valenzuela ◽  
Jaime Romero ◽  
...  

Piscine orthoreovirus (PRV) belongs to the family Reoviridae and has been described mainly in association with salmonid infections. The genome of PRV consists of about 23,600 bp, with 10 segments of double-stranded RNA, classified as small (S1 to S4), medium (M1, M2 and M3) and large (L1, L2 and L3); these range approximately from 1000 bp (segment S4) to 4000 bp (segment L1). How the genetic variation among PRV strains affects the virulence for salmonids is still poorly understood. The aim of this study was to describe the molecular phylogeny of PRV based on an extensive sequence analysis of the S1 and M2 segments of PRV available in the GenBank database to date (May 2020). The analysis was extended to include new PRV sequences for S1 and M2 segments. In addition, subgenotype classifications were assigned to previously published unclassified sequences. It was concluded that the phylogenetic trees are consistent with the original classification using the PRV genomic segment S1, which differentiates PRV into two major genotypes, I and II, and each of these into two subgenotypes, designated as Ia and Ib, and IIa and IIb, respectively. Moreover, some clusters of country- and host-specific PRV subgenotypes were observed in the subset of sequences used. This work strengthens the subgenotype classification of PRV based on the S1 segment and can be used to enhance research on the virulence of PRV.


2005 ◽  
Vol 26 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Francisca do Val ◽  
Paulo Nuin

AbstractThe systematics and phylogenetic relationships of the family Leptodactylidae are controversial as is the intrafamilial phylogeny of the leptodactylids. Here we analyze the relationships of the leptodactylid subfamily Hylodinae. This subfamily has been considered to be monophyletic and composed of three genera, Hylodes, Crossodactylus and Megaelosia. In the present study 49 characters were used, based on different studies on Leptodactylidae phylogeny. Maximum parsimony methods with unweighted and successively weighted characters were used to estimate the phylogeny of the Hylodinae. Upon analysis, the data provided further evidence of the monophyletic status of the three genera, with Megaelosia being the basal genus and the other two genera being sister taxa. The analysis with successive weighting results in a more resolved topology of the species subgroups of the genus Hylodes and separates this genus from Crossodactylus and confirms that the hylodines are monophyletic.


Sign in / Sign up

Export Citation Format

Share Document