The complete mitochondrial genome of Zicrona caerulea (Linnaeus) (Hemiptera: Pentatomidae: Asopinae) and its phylogenetic implications

Zootaxa ◽  
2020 ◽  
Vol 4747 (3) ◽  
pp. 547-561
Author(s):  
QING ZHAO ◽  
GERASIMOS CASSIS ◽  
LING ZHAO ◽  
YIFAN HE ◽  
HUFANG ZHANG ◽  
...  

Zicrona caerulea (Linnaeus, 1758) is a cosmopolitan stink bug species, which belongs to the predatory subfamily Asopinae. In this study, the complete mitochondrial genome of Zicrona caerulea from Shanxi, China was sequenced for the first time, using next generation sequencing. The mitogenome was found to be 15,479 bp in length. It contained 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a typical control region. This research revealed an overall A+T content of 77.14%. All tRNA genes had a clover-leaf structure except for trnS1, which lacks a dihydrouridine (DHU) arm; and for trnV, the DHU arm forms a simple loop. The lengths of rrnS and rrnL were 797 bp and 1,285 bp, respectively. Because of a shortage in tandem repeats, the A+T-rich region was 644 bp in length. Phylogenetic relationships based on these mitogenomes, using Bayesian inference and Maximum likelihood methods, showed that Zicrona caerulea belongs to Asopinae. The monophyly of families of the Pentatomoidea is supported, albeit limited taxon sampling. 

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dawei Liu ◽  
Yongwu Zhou ◽  
Yiling Fei ◽  
Chunping Xie ◽  
Senlin Hou

AbstractHistorically, the diving duck, Baer’s Pochard (Aythya baeri) was widely distributed in East and South Asia, but according to a recent estimate, its global population is now less than 1000 individuals. To date, the mitochondrial genome of A. baeri has not been deposited and is not available in GenBank. Therefore, we aimed to sequence the complete mitochondrial genome of this species. The genome was 16,623 bp in length, double stranded, circular in shape, and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one non-coding control region. Many structural and compositional similarities were discovered between A. baeri and the other three Aythya mitochondrial genomes. Among 13 protein-coding genes of the four Aythya species, the fastest-evolving gene was ATP8 while the slowest-evolving gene was COII. Furthermore, the phylogenetic tree of Anatidae based on Bayesian inference and maximum likelihood methods showed that the relationships among 15 genera of the Anatidae family were as follows: Dendrocygna was an early diverging lineage that was fairly distant from the other ingroup taxa; Cygnus, Branta, and Anser were clustered into one branch that corresponded to the Anserinae subfamily; and Aythya, Asarcornis, Netta, Anas, Mareca, Mergus, Lophodytes, Bucephala, Tadorna, Cairina, and Aix were clustered into another branch that corresponded to the Anatinae subfamily. Our target species and three other Aythya species formed a monophyletic group. These results provide new mitogenomic information to support further phylogenetic and taxonomic studies and genetic conservation of Anatidae species.


Zootaxa ◽  
2012 ◽  
Vol 3537 (1) ◽  
pp. 29 ◽  
Author(s):  
LI LIU ◽  
HU LI ◽  
FAN SONG ◽  
WEN SONG ◽  
XUN DAI ◽  
...  

The nearly complete mitochondrial genome of Coridius chinensis (Dallas) is reported in this study. The mitogenome is a double-stranded circular molecule of more than 14,648 bp in length with an A+T content of 75.1%. It encoded 37 genes as in other insect mtDNAs, including 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and a control region (unsuccessful sequencing), and the gene order is the same as most other known heteropteran mitogenomes. All of the 22 transfer RNAs can be folded into the typical cloverleaf structure except tRNASer(AGN), which can only form a simple loop at the site of dihydrouridine (DHU) arm as known in other metazoans. The secondary structures of the large and small ribosomal RNAs of C. chinensis are similar to other presented insects. The rrnL consisted of six structural domains and 40 helices, and the rrnS consisted of three structural domains and 26 helices. Nine PCGs are initiated with the standard initiation codons (ATN), while ND6 and ND1 use GTG, and COI and ATP8 use TTG. All PCGs stopped with TAA/TAG termination codons except the COII terminated with a single T residue. Asymmetry in the nucleotide composition between J-strand and N-strand was observed in this mitogenome.


Zootaxa ◽  
2013 ◽  
Vol 3620 (2) ◽  
pp. 260-272 ◽  
Author(s):  
WEN SONG ◽  
HU LI ◽  
FAN SONG ◽  
LI LIU ◽  
PEI WANG ◽  
...  

The 16, 299 bp long mitochondrial genome (mitogenome) of a tessaratomid bug, Eusthenes cupreus (Westwood), is reported and analyzed. The mitogenome represents the first sequenced complete mitogenome of the heteropteran family Tessaratomidae. The mitogenome of E. cuopreus is a typical circular DNA molecule with a total AT content of 74.1%, and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region. The gene arrangement is identical with the most common type in insects. Most PCGs start with the typical ATN codon, except that the initiation codon for COI is TTG. All tRNAs possess the typical clover-leaf structure, except tRNASer (AGN), in which the dihydrouridine (DHU) arm forms a simple loop. Six domains with 45 helices and three domains with 27 helices are predicted in the secondary structures of rrnL and rrnS, respectively. The control region is located between rrnS and tRNAIle, including some short microsatellite repeat sequences. In addition, three different repetitive sequences are found in the control region and the tRNAIle-tRNAGln-tRNAMet-ND2 gene cluster. One of the unusual features of this mitogenome is the presence of one tRNAGln-like sequence in the control region. This extra tRNAGln-like sequence is 73 bp long, and the anticodon arm is identical to that of the regular tRNAGln.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Yang-Yang Liu ◽  
Zhi-Cheng Zhou ◽  
Xiang-Sheng Chen

Abstract The complete mitochondrial genome (mitogenome) of Epicauta impressicornis Pic (Coleoptera: Meloidae) was determined. The circular genome is 15,713-bp long, and encodes 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region (CR). The 13 PCGs start with the typical ATN codon and terminate with the typical stop codon TAA (ND2, ND4L, ND6, ATP6, ATP8, and CYTB), TAG (ND1 and ND3), and T- (COX1, COX2, COX3, ND4, and ND5). The two rRNA genes (rrn12S and rrn16S) are encoded on the minority strand. All tRNAs genes except trnS1 (AGN) are predicted to fold into the typical cloverleaf structure. The longest overlap (10 bp) is observed between ATP8 and ATP6. CR mainly harbors a conserved poly-T stretch (15 bp), a short repeat unit (17 bp), some universal microsatellite-like repeats, and a canonical poly-A tail. Phylogenetic analysis using Bayesian inferences and maximum likelihood based on nucleotide and corresponding amino acid sequences of the 13 PCGs showed that E. impressicornis is closely related to E. chinensis, this relationship is and supported within Cucujiformia belonging to Meloidae (Tenebrionoidea). Our results further confirmed the monophyly of Tenebrionoidea, Lymexyloidea, Curculionoidea, Chrysomeloidea, Cucujoidea, Coccinelloidea, and Cleroidea within Cucujiformia, and revealed the sister relationships of (Cleroidea + Coccinelloidea), (Lymexyloidea + Tenebrionoidea), and ((Chrysomeloidea + Cucujoidea) + Curculionoidea). We believe that the complete mitogenome of E. impressicornis will contribute to further studies on molecular bases for the classification and phylogeny of Meloidae or even Cucujiformia.


Zootaxa ◽  
2020 ◽  
Vol 4732 (3) ◽  
pp. 461-473
Author(s):  
JIAJIA CHEN ◽  
JINJUN CAO ◽  
MENGDAN CHEN ◽  
SIJIN CHEN ◽  
WEIHAI LI ◽  
...  

We sequenced the complete mitochondrial genome (mitogenome) of a stonefly, Amphinemura claviloba (Wu, 1973), of the family Nemouridae (Insecta: Plecoptera). The mitogenome was 15,707 bp long and contained typical 37 genes with an A+T content of 68.5%. All protein-coding genes (PCGs) use standard initiation codons (methionine and isoleucine), except ND1 and ND5 which starts with TTG and GTG, respectively. Two of the 13 PCGs harbor the incomplete termination codon. All tRNA genes have typical clover secondary structures, except the dihydrouridine (DHU) arm of tRNASer(AGN) forms a simple loop. Secondary structure models of the ribosomal RNA genes of A. claviloba are similar to those proposed for other insects. We also found some structural elements in the control region, such as tandem repeats, poly-C stretch and microsatellite-like elements, etc. Phylogenetic analyses showed the clades for the Nemoura, Amphinemura, and (Mesonemoura + Sphaeronemoura + Indonemoura + Protonemura) are well supported in a polytomy. 


2018 ◽  
Vol 94 ◽  
Author(s):  
P. Zhang ◽  
R.K. Ran ◽  
A.Y. Abdullahi ◽  
X.L. Shi ◽  
Y. Huang ◽  
...  

AbstractDipetalonema gracile is a common parasite in squirrel monkeys (Saimiri sciureus), which can cause malnutrition and progressive wasting of the host, and lead to death in the case of massive infection. This study aimed to identify a suspected D. gracile worm from a dead squirrel monkey by means of molecular biology, and to amplify its complete mitochondrial genome by polymerase chain reaction (PCR) and sequence analysis. The results identified the worm as D. gracile, and the full length of its complete mitochondrial genome was 13,584 bp, which contained 22 tRNA genes, 12 protein-coding genes, two rRNA genes, one AT-rich region and one small non-coding region. The nucleotide composition included A (16.89%), G (20.19%), T (56.22%) and C (6.70%), among which A + T = 73.11%. The 12 protein-coding genes used TTG and ATT as start codons, and TAG and TAA as stop codons. Among the 22 tRNA genes, only trnS1AGN and trnS2UCN exhibited the TΨC-loop structure, while the other 20 tRNAs showed the TV-loop structure. The rrnL (986 bp) and rrnS (685 bp) genes were single-stranded and conserved in secondary structure. This study has enriched the mitochondrial gene database of Dipetalonema and laid a scientific basis for further study on classification, and genetic and evolutionary relationships of Dipetalonema nematodes.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242541
Author(s):  
Lvpei Du ◽  
Shanya Cai ◽  
Jun Liu ◽  
Ruoyu Liu ◽  
Haibin Zhang

Phymorhynchus is a genus of deep-sea snails that are most distributed in hydrothermal vent or cold seep environments. In this study, we presented the complete mitochondrial genome of P. buccinoides, a cold seep snail from the South China Sea. It is the first mitochondrial genome of a cold seep member of the superfamily Conoidea. The mitochondrial genome is 15,764 bp in length, and contains 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. These genes are encoded on the positive strand, except for 8 tRNA genes that are encoded on the negative strand. The start codon ATG and 3 types of stop codons, TAA, TAG and the truncated termination codon T, are used in the 13 PCGs. All 13 PCGs in the 26 species of Conoidea share the same gene order, while several tRNA genes have been translocated. Phylogenetic analysis revealed that P. buccinoides clustered with Typhlosyrinx sp., Eubela sp., and Phymorhynchus sp., forming the Raphitomidae clade, with high support values. Positive selection analysis showed that a residue located in atp6 (18 S) was identified as the positively selected site with high posterior probabilities, suggesting potential adaption to the cold seep environment. Overall, our data will provide a useful resource on the evolutionary adaptation of cold seep snails for future studies.


ZooKeys ◽  
2021 ◽  
Vol 1061 ◽  
pp. 57-73
Author(s):  
Renyi Zhang ◽  
Qian Tang ◽  
Lei Deng

Mitochondria are important organelles with independent genetic material of eukaryotic organisms. In this study, we sequenced and analyzed the complete mitogenome of a small cyprinid fish, Microphysogobio elongatus (Yao & Yang, 1977). The mitogenome of M. elongatus is a typical circular molecule of 16,612 bp in length containing 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and a 930 bp control region. The base composition of the M. elongatus mitogenome is 30.8% A, 26.1% T, 16.7% G, and 26.4% C. All PCGs used the standard ATG start codon with the exception of COI. Six PCGs terminate with complete stop codons, whereas seven PCGs (ND2, COII, ATPase 6, COIII, ND3, ND4, and Cyt b) terminate with incomplete (T or TA) stop codons. All tRNA genes exhibited typical cloverleaf secondary structures with the exception of tRNASer(AGY), for which the dihydrouridine arm forms a simple loop. The phylogenetic analysis divided the subfamily Gobioninae in three clades with relatively robust support, and that Microphysogobio is not a monophyletic group. The complete mitogenome of M. elongatus provides a valuable resource for future studies about molecular phylogeny and/or population genetics of Microphysogobio.


Author(s):  
Tianhong Wang ◽  
Zihao Wang ◽  
Ruwei Bai ◽  
Zhijun Yu ◽  
Jingze Liu

Haemaphysalis qinghaiensis is an endemic species and mainly inhabiting in the northwestern plateau of China, which can transmit many zoonotic pathogens and cause great harm to animals. In this study, the complete mitochondrial genome (mitogenome) of H. qinghaiensis was assembled through the Illumina HiSeq platform. The mitogenome was 14,533 bp in length, consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and 3 noncoding regions (NCRs). The bias towards a high A+T content with 77.65% in mitogenome of H. qinghaiensis. The rearrangement of mitochondrial genes in H. qinghaiensis was consistent with other hard ticks. The phylogenetic analysis based on the concatenation of 13 PCGs from 65 tick mitogenomes showed that the H. qinghaiensis was clustered into a well-supported clade within the Haemaphysalis genus. This is the first complete mitogenome sequence of H. qinghaiensis, which provides a useful reference for understanding of the taxonomic and genetics of ticks.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Li-Shang Dai ◽  
Bao-Jian Zhu ◽  
Yue Zhao ◽  
Cong-Fen Zhang ◽  
Chao-Liang Liu

Abstract In this study, we sequenced the complete mitochondrial genome of Eligma narcissus and compared it with 18 other lepidopteran species. The mitochondrial genome (mitogenome) was a circular molecule of 15,376 bp containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and an adenine (A) + thymine (T) − rich region. The positive AT skew (0.007) indicated the occurrence of more As than Ts. The arrangement of 13 PCGs was similar to that of other sequenced lepidopterans. All PCGs were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which was initiated by the CGA sequence, as observed in other lepidopterans. The results of the codon usage analysis indicated that Asn, Ile, Leu, Tyr and Phe were the five most frequent amino acids. All tRNA genes were shown to be folded into the expected typical cloverleaf structure observed for mitochondrial tRNA genes. Phylogenetic relationships were analyzed based on the nucleotide sequences of 13 PCGs from other insect mitogenomes, which confirmed that E. narcissus is a member of the Noctuidae superfamily.


Sign in / Sign up

Export Citation Format

Share Document