Male terminalia morphology of sixteen species of the Drosophila saltans group Sturtevant (Diptera, Drosophilidae)

Zootaxa ◽  
2021 ◽  
Vol 5061 (3) ◽  
pp. 523-544
Author(s):  
BRUNA EMILIA ROMAN ◽  
LILIAN MADI-RAVAZZI

Male terminalia in insects with internal fertilization evolve more rapidly than other structures. The aedeagus is the most variable structure, making it a valuable diagnostic feature to distinguish species. The saltans group Sturtevant of Drosophila Fallén contains sibling species, that can be distinguished by their aedeagi. Here, we revised and illustrated the morphology of the male terminalia of the following species: Drosophila prosaltans Duda, 1927; D. saltans Sturtevant, 1916; D. lusaltans Magalhães, 1962; D. austrosaltans Spassky, 1957; D. septentriosaltans Magalhães, 1962; D. nigrosaltans Magalhães, 1962; D. pseudosaltans Magalhães, 1956; D. sturtevanti Duda, 1927; D. lehrmanae Madi-Ravazzi et al., 2021; D. dacunhai Mourão & Bicudo, 1967; D. milleri Magalhães, 1962; D. parasaltans Magalhães, 1956; D. emarginata Sturtevant, 1942; D. neoelliptica Pavan & Magalhães in Pavan, 1950; D. neosaltans Pavan & Magalhães in Pavan, 1950 and D. neocordata Magalhães, 1956. We found that phallic structures (e.g., the aedeagus) evolve more rapidly than periphallic structures (e.g., epandrium), being completely different among the subgroups and within them. This rapid evolution may be due to the action of sexual selection or to the potential role of those structures in speciation.  

Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1033-1041 ◽  
Author(s):  
A Civetta ◽  
R S Singh

Studies of sexual selection have traditionally focused on explaining the extreme sexual dimorphism in male secondary sexual traits and elaborate mating behaviors displayed by males during courtship. In recent years, two aspects of sexual selection have received considerable attention in the literature: an extension of the sexual selection concept to other traits (i.e., postcopulatory behaviors, external and internal genital morphology, gametes, molecules), and alternative mechanistic explanations of the sexual selection process (i.e., coevolutionary runaway, good-genes, sexual conflicts). This article focuses on the need for an extension of sexual selection as a mechanism of change for courtship and (or) mating male characters (i.e., narrow-sense sexual selection) to all components of sexuality not necessarily related to courtship or mating (i.e., broad-sense sexual selection). We bring together evidence from a wide variety of organisms to show that sex-related genes evolve at a fast rate, and discuss the potential role of broad-sense sexual selection as an alternative to models that limit speciation to strict demographic conditions or treat it simply as an epiphenomenon of adaptive evolution.Key words: sexual selection, sex-related genes, speciation.


2021 ◽  
Vol 17 (6) ◽  
pp. 20210234
Author(s):  
Glauco Machado ◽  
Bruno A. Buzatto ◽  
Diogo S. M. Samia

In many species, sexual dimorphism increases with body size when males are the larger sex but decreases when females are the larger sex, a macro-evolutionary pattern known as Rensch's rule (RR). Although empirical studies usually focus exclusively on body size, Rensch's original proposal included sexual differences in other traits, such as ornaments and weapons. Here, we used a clade of harvestmen to investigate whether two traits follow RR: body size and length of the fourth pair of legs (legs IV), which are used as weapons in male–male fights. We found that males were slightly smaller than females and body size did not follow RR, whereas legs IV were much longer in males and followed RR. We propose that sexual selection might be stronger on legs IV length than on body size in males, and we discuss the potential role of condition dependence in the emergence of RR.


2018 ◽  
Author(s):  
Jenn M. Coughlan ◽  
Maya Wilson Brown ◽  
John H. Willis

SummaryGenomic conflicts may play a central role in the evolution of reproductive barriers. Theory predicts that early-onset hybrid inviability may stem from conflict between parents for resource allocation to offspring. Here we describe M. decorus; a group of cryptic species within the M. guttatus species complex that are largely reproductively isolated by hybrid seed inviability (HSI). HSI between M. guttatus and M. decorus is common and strong, but populations of M. decorus vary in the magnitude and directionality of HSI with M. guttatus. Patterns of HSI between M. guttatus and M. decorus, as well as within M. decorus conform to the predictions of parental conflict: (1) reciprocal F1s exhibit size differences and parent-of-origin specific endosperm defects, (2) the extent of asymmetry between reciprocal F1 seed size is correlated with asymmetry in HSI, and (3) inferred differences in the extent of conflict predict the extent of HSI between populations. We also find that HSI is rapidly evolving, as populations that exhibit the most HSI are each others’ closest relative. Lastly, while all populations are largely outcrossing, we find that the differences in the inferred strength of conflict scale positively with π, suggesting that demographic or life history factors other than mating system may also influence the rate of parental conflict driven evolution. Overall, these patterns suggest the rapid evolution of parent-of-origin specific resource allocation alleles coincident with HSI within and between M. guttatus and M. decorus. Parental conflict may therefore be an important evolutionary driver of reproductive isolation.


2008 ◽  
Vol 14 (5) ◽  
pp. 660-664 ◽  
Author(s):  
Judith Flores ◽  
Ronen Arnon ◽  
Raffaella A. Morotti ◽  
Lisa Guay-Woodford ◽  
Sukru Emre ◽  
...  

2020 ◽  
Vol 16 (6) ◽  
pp. 20200251
Author(s):  
Meng-Han Joseph Chung ◽  
Rebecca J. Fox ◽  
Michael D. Jennions

The evolution of male genital traits is usually ascribed to advantages that arise when there is sperm competition, cryptic female choice or sexual conflict. However, when male–female contact is brief and sperm production is costly, genital structures that ensure the appropriate timing of sperm release should also be under intense selection. Few studies have examined the role of individual structures in triggering ejaculation. We therefore conducted a series of anatomical manipulations of fine-scale features of the complex intromittent organ (gonopodium) of a freshwater fish with internal fertilization ( Gambusia holbrooki ) to determine their effects on sperm release. Mating in G. holbrooki is fleeting (less than 50 ms), so there should be strong selection for control over the timing of sperm release. We surgically removed three features at the tip of the gonopodium (claws, spines, awl-shape) to test for their potential role in triggering ejaculation. We show that the ‘awl-shape' of the tip affects sperm release when a male makes contact with a female, but neither gonopodial claws nor spines had a detectable effect. We suggest that the claws and spines may instead function to increase the precision of sperm deposition (facilitating anchorage and contact time with the female's gonopore), rather than the initiation of ejaculation.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


Sign in / Sign up

Export Citation Format

Share Document